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Abstract

Object attention maps generated by image classifiers are
usually used as priors for weakly-supervised segmentation
approaches. However, normal image classifiers produce at-
tention only at the most discriminative object parts, which
limits the performance of weakly-supervised segmentation
task. Therefore, how to effectively identify entire object re-
gions in a weakly-supervised manner has always been a
challenging and meaningful problem. We observe that the
attention maps produced by a classification network contin-
uously focus on different object parts during training. In
order to accumulate the discovered different object parts,
we propose an online attention accumulation (OAA) strat-
egy which maintains a cumulative attention map for each
target category in each training image so that the integral
object regions can be gradually promoted as the training
goes. These cumulative attention maps, in turn, serve as the
pixel-level supervision, which can further assist the network
in discovering more integral object regions. Our method
(OAA) can be plugged into any classification network and
progressively accumulate the discriminative regions into
integral objects as the training process goes. Despite its
simplicity, when applying the resulting attention maps to
the weakly-supervised semantic segmentation task, our ap-
proach improves the existing state-of-the-art methods on the
PASCAL VOC 2012 segmentation benchmark, achieving a
mIoU score of 66.4% on the test set. Code is available at
https://mmcheng.net/oaa/.

1. Introduction

Benefiting from the large-scale pixel-level training data
and advanced convolutional neural network (CNN) architec-
tures, fully-supervised semantic segmentation approaches,
such as [5, 25, 28, 48, 44], have made great progress re-
cently. However, constructing a large-scale pixel-accurate
dataset is fairly expensive and requires considerable human
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Figure 1. Observation of our proposed approach. (a) Source im-
ages; (b-d) Intermediate attention maps produced by a classification
network at different training stages; (e) Cumulative attention maps
produced by combining attention maps in (b), (c), and (d) through a
simple element-wise maximum operation. It can be easily observed
that the discriminative regions continuously shift over different
parts of the semantic objects. The fused attention maps in (e) can
record most of semantic regions compared to (b), (c), and (d). Best
viewed in color.

efforts and time cost. In order to economize human labors,
researchers propose to learn semantic segmentation using
weak supervision, such as bounding boxes [33], points [2],
and even image-level annotations [32]. Among these weak
supervisions, image-level annotations can be more easily ob-
tained than other annotations. Thus, in this paper, we focus
on semantic segmentation under image-level supervision.

Because of the ability to discover discriminative atten-
tion regions, classification models [49, 35] have been widely
used in the weakly-supervised semantic segmentation task
for generating initial class-specific seeds. However, the dis-
covered regions often focus on small parts of the semantic
objects, which limits the capability of segmentation networks
to learn rich pixel-level semantic knowledge. Later methods
consider leveraging the adversarial erasing strategy [41, 46]

https://mmcheng.net/oaa/


to mine more semantic regions. Unfortunately, as the train-
ing process continues, the discriminative regions expand,
and thus some undesired background stuff is also predicted
as foreground. In [43], dilated convolution is revisited for
attention generation. However, the convolution layers with
larger dilation rates often lead to the appearance of noisy
regions.

One common point shared by the above approaches is
that they all utilize the final classification models to generate
attention maps. In this paper, we consider the attention gen-
eration process from a new perspective. We observe that the
discriminative regions discovered at different training stages
constantly shift over different parts of the semantic objects
before the classification network reaches convergence. The
main reasons can be briefly summarized as follows:

• First, a powerful classification network usually seeks
robust common patterns for a specific category so that
all the images from such a category can be well recog-
nized. Therefore, those training samples that are hard
to be correctly classified will drive the network to make
changes in choosing common patterns, leading to the
continuous shift of attention regions until the network
reaches convergence.

• Second, in the training phase, attention maps produced
by the current attention model are mostly influenced
by the previous input images. Therefore, images with
different content and the input order of the training im-
ages will both lead to the variation of the discriminative
regions in the intermediate attention maps.

More interestingly, we also observe that the discriminative
regions discovered at different training phases are often com-
plementary, which reflects the importance of leveraging the
intermediate attention maps for detecting integral objects.
Fig. 1(b-d) gives a clear illustration of this phenomenon,
which shows the variation of attention regions as the train-
ing process continues. If these discriminative regions in
the intermediate attention maps can be recorded, we may
successfully promote the capability of detecting complete
semantic objects with only image-level supervision.

Based on the above observation, we introduce a simple yet
effective approach for attention generation, which is capable
of taking the intermediate states of classification networks
into account. Specifically, we present an online attention
accumulation (OAA) strategy, in which a cumulative atten-
tion map for each category in each image is maintained to
sequentially accumulate the discriminative regions produced
by the classification network at different training phases. The
complementarity of the intermediate attention maps enables
discovering integral semantic objects to be possible (see
Fig. 1e). Despite the relatively complete attention regions
by OAA compared to CAM [49], some attention valuses in
object regions are still not strong enough. To improve this

situation, we further design a hybrid loss function (the com-
bination of an enhanced loss and a constraint loss) to train an
integral attention model by taking the cumulative attention
maps as soft labels. In this way, the new attention model
advances the OAA strategy and can generate more integral
object regions. To evaluate the quality of the attention maps
by our approach, we conduct a series of ablation experiments
and apply them to the weakly-supervised semantic segmen-
tation task. We show significant improvements over existing
methods on the popular PASCAL VOC 2012 segmentation
benchmark [9] (a mean IoU score of 66.4% on the test set).
We hope the thought of OAA could promote the develop-
ment of attention models or even other research areas in the
future.

2. Related Work
In this section, we briefly review the history of atten-

tion models and describe the weakly-supervised semantic
segmentation methods that are strongly related to our work.

2.1. Visual Attention

To date, some outstanding work has been proposed in
order to get high-quality attentions. As an early attempt, Si-
monyan et al. [37] used the error back-propagation strategy
to visualize semantic regions. Later, CAM [49] shows the
ability of the global average pooling (GAP) layer by using
it to convolutional neural networks to detect the class acti-
vation maps. Based on CAM, Grad-CAM [35] proposes a
technique for producing visual explanations for any target
concept such as image classification, VQA, and image cap-
tioning by flowing the gradients into the final convolutional
layer to produce coarse attention maps. Moreover, some
researchers were inspired by the top-down human visual
attention system and proposed a new method called Exci-
tation Backprop [45], which hierarchically propagated the
top-down signals downwards in the network via a proba-
bilistic Winner-Take-All process. Recently, different from
the above methods for explaining the networks, some work
[46, 24, 43, 19, 47] produced attention maps by localizing
large and integral relevant regions of the semantic objects
for weakly-supervised semantic segmentation. All the above
methods utilize the final classification models to generate at-
tention. Besides top-down visual attention, recent researches
[40, 18, 43] also found that bottom-up salient objects cues
[?, 39, 7] are very useful for extracting background cues.

2.2. Weakly-Supervised Semantic Segmentation

Weakly-supervised semantic segmentation has also expe-
rienced great progress as a variety of methods were pro-
posed. Among these methods, we only introduce some
segmentation approaches with image-level supervision that
are strongly related to our work. The mainstream methods
[23, 40, 20, 43, 1] use the attention maps as initial seeds.



tvmonitor

...

GAP

Online Attention Accumutation (OAA)

A2 A3 AT 

M1 M2 MT-1 MT 

Input 

...

A1 

AF AF AF

Classification 
Loss

A1 → M1 

Attention

AF

Class-aware 
Convolution Layer

Global Average 
Pooling

Attention Fusion 
Operation

GAP

Figure 2. Illustration of our online attention accumulation (OAA) process. The attention maps are generated online from the class-aware
convolutional layer. Our OAA utilizes these discriminative regions of attention maps at the different training phases and integrates them into
the cumulative attention maps with a simple attention fusion strategy progressively.

Typically, SEC [23] introduced three loss functions called
seeding, expansion and boundary constrain losses to expand
the initial seeds and meanwhile train the segmentation model.
However, the performance of these methods is limited in that
the object-related seeds only cover small and sparse semantic
regions.

More recently, researchers proposed a variety of methods
to mine integral object regions based on classification net-
works. In [41], Wei et al. proposed an approach which uses
an adversarial erasing (AE-PSL) strategy to mine different
regions of the objects progressively in order to obtain dense
maps. However, the procedures of AE-PSL are complicated,
which requires repetitive training procedures and learns mul-
tiple classification models to obtain different object regions.
GAIN [24] improved the adversarial erasing strategy by us-
ing attention maps to provide a self-guidance that forces the
network to focus attention on the objects holistically.

3. Methodology
In this section, we describe the pipeline of our proposed

approach and exhaustively explain the working mechanism
of each component in our framework. Fig. 3 illustrates the
whole framework of our method.

3.1. Attention Generation

In this paper, we adopt CAM [49] as our default discrim-
inative region generator. In order to obtain attention maps
at the training stage, we use the class-specific feature maps
outputted by the last convolutional layer to generate atten-
tion maps, which is proven by [46] identical to the attention
generation process in CAM.

The basic architecture can be found on the top of Fig. 2.
Like most previous work [46, 43], we also adopt the VGG-

16 [38] as our backbone. First, three convolutional layers
are added on the top of the fully-convolutional backbone,
each of which is followed by a ReLU layer for nonlinear
transformation. A class-aware convolutional layer of C
channels with kernel size 1× 1 is then added for capturing
the attention. Here C is the number of categories. Let F be
the output of the class-aware convolutional layer. Regarding
the fact that some images may have more than one category,
we treat the whole training process as C binary classification
problems. The probability of predicting the target category c
can be computed by

pc = σ
(
GAP(F c)

)
, (1)

where GAP is the global average pooling operation, and σ(·)
is the sigmoid function. The cross-entropy loss is used to
optimize the whole network. To get the attention maps given
an image I , the feature map F is first fed into a ReLU layer,
and then a simple normalization operation is performed to
make sure the values in each attention map range from 0 to
1:

Ac =
ReLU(F c)

max(F c)
. (2)

We then apply the attention maps generated at different train-
ing stages into the OAA process.

3.2. Online Attention Accumulation

To effectively implement our observation, we propose an
online attention accumulation (OAA) strategy. When the
training images are fed into the network at different training
epochs, OAA combines the generated attention maps from
the classification models. In particular, as shown in Fig. 2,
for each target class c in a given training image I , we estab-
lish a cumulative attention mapM c which is used to preserve
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Figure 3. Pipeline of our OAA+ approach. The attention maps generated by the classification network during different training time are
fused into the cumulative attention maps to mine the object regions as entire as possible. Then the obtained cumulative attention maps are
utilized as pixel-level supervision to train the integral attention model, which further advances the quality of the attention maps.

the discovered discriminative regions. Our OAA first uses
the attention map A1

1 of class c at the first epoch (i.e., A1

is obtained when the training image is inputted to network
for the first time) to initialize the cumulative attention map
M1. Then, when the image is inputted to the network for the
second time, the OAA updates the cumulative attention map
by combining M1 and the newly generated attention map
A2 according to the following fusion strategy:

M2 = AF
(
M1, A2

)
, (3)

where AF(·) represents the attention fusion strategy. Simi-
larly, at the t-th epoch, the OAA uses the attention map At

to update the cumulative attention map Mt−1, yielding

Mt = AF
(
Mt−1, At

)
. (4)

The OAA repeats the above updating process continuously,
and we can obtain the final cumulative attention maps un-
til the classification model converges. In the above updat-
ing process, the attention fusion strategy is responsible for
preserving the discriminative regions of these intermediate
attention maps to constitute more complete object regions.

Regarding the fusion strategy, we propose an effective but
simple one, which is the element-wise maximum operation.
It takes the maximum attention values between the attention
maps At and the current cumulative attention maps Mt−1,
which is formulated as follows:

Mt = AF
(
Mt−1, At

)
= max

(
Mt−1, At

)
. (5)

The OAA with maximum fusion strategy can effectively
save the different discriminative object regions into the cu-
mulative attention maps. As shown in Fig. 5, the cumulative
attention maps generated by OAA have more entire regions
than the attention maps generated by CAM [49]. We also

1Here, we omit the class c for convenience.

explore the averaging fusion strategy for OAA. However,
the performance drops 1.6% of the mIoU scores compared
to the maximum fusion strategy. In Sec. 4.3, we perform
ablation experiments to show the differences between these
two fusion strategies.

It is worth mentioning that as the classification model
is weak and may focus on noisy regions at the beginning
of the training process, we use the predicted probability
of the target classes to decide whether we accumulate the
corresponding attention maps. In particular, if the classifi-
cation score of the target category is higher than those of
all non-target categories, we accumulate the attention map
of the target category in OAA. Otherwise, we abandon this
attention map to avoid noise.

3.3. Towards Integral Attention Learning

The OAA integrates the attention maps at different epochs
in the training phase to produce more integral object regions.
However, the weakness of OAA is that some object regions
with lower attention values cannot be enhanced by the clas-
sification model itself. Taking this situation into account,
we introduce a new loss function by regarding the cumula-
tive attention maps as supervision to train an integral atten-
tion model to further improve our OAA, which is named as
OAA+.

To be specific, we use the cumulative attention maps as
soft labels as done in [42]. Each attention value is viewed
as the probability of the location belonging to the corre-
sponding target class. We adopt the classification network
shown in Fig. 2 without the global average pooling layer
and classification loss as our integral attention model. Given
the score map F̂ produced by the class-aware convolutional
layer, the probability of location j being some category c can
be denoted by qcj = σ(F̂ c

j ), where σ is the sigmoid function.
Thus, the multi-label cross-entropy loss for class c used in



[42] can be written as:

− 1

|N |
∑
j∈N

(
pcj log(q

c
j) + (1− pcj) log(1− qcj)

)
, (6)

where pcj denotes the values in the normalized cumulative
attention maps. After optimization, the enhanced attention
maps can be obtained directly from the class-aware convo-
lutional layer. However, with the above multi-label cross
entropy loss function, the produced attention maps tend to
cover the semantic object regions partially. The reason is
that the loss function in Eq. (6) prefers classifying pixels
with low class-specific attention values (pcj < 1− pcj) to be
the background for category c.

In consideration of the above discussion, we propose an
improved hybrid loss. Given the cumulative attention map
ranging from 0 to 1 for class c, we firstly divide it to soft
enhance regions N c

+ and soft constraint regions N c
−, where

N c
− includes pixels with pcj = 0 and N c

+ contains other
pixels. For pixel set N c

+, we remove the last term of Eq. (6)
in order to further promote the attention regions but not
suppress the regions with low attention values. Formally, we
have the loss function for N c

+ as

Lc
+ = − 1

|N c
+|
∑
j∈Nc

+

pcj log(q
c
j). (7)

As only image-level labels are given here, the attention re-
gions in the cumulative attention maps often contain non-
target pixels because of the irregular shapes of semantic
objects. Therefore, in Eq. (7), we use pcj as the ground-truth
label instead of 1 such that lower attention values in the cu-
mulative attention maps over non-semantic areas have nearly
no negative effect on the network. For N c

− where pcj = 0,
the loss function in Eq. (6) collapses to the following form:

Lc
− = − 1

|N c
−|

∑
j∈Nc

−

log(1− qcj). (8)

As a result, the total hybrid loss function for our integral
attention model can be computed by:

L =
∑
c∈C

(Lc
+ + Lc

−). (9)

In this way, the lower values in soft enhanced regions also
contribute to optimization according to the loss function in
Eq. (7). Eq. (8) constrains the excess expansion of attention
areas to the background.

Based on the proposed loss function, we can train an
integral attention model to further strengthen the lower at-
tention values of target object regions. At the inference time,
the improved attention maps can be directly obtained from
the class-aware convolutional layer of the integral attention
model. Additionally, Fig. 5 shows some visual results of our
attention maps, and more quantitative analysis is conducted
in Sec. 4.3.

4. Experiments
In order to demonstrate the effectiveness of our approach,

we apply our attention maps produced by OAA and OAA+

as heuristic cues to the weakly-supervised semantic segmen-
tation task. We use the attention maps to extract object cues
and saliency maps [?] to extract background cues. These
cues are then utilized to generate the pseudo segmentation
annotations. We assign the category tag corresponding to
the maximum value to the pixels in proxy segmentation la-
bels. All the conflicted pixels are ignored for training. The
proxy ground-truths generated from the above method are
used to train segmentation models. In the following subsec-
tions, we provide a series of ablation studies and compare
our approach with the previous state-of-the-art approaches.

4.1. Dataset and Settings.

Dataset and Evaluation Metrics We evaluate our approach
on the PASCAL VOC 2012 segmentation benchmark [9],
which contains 20 semantic categories and the background.
As done in most previous work, we also use the augmented
training set [13] for model training. Therefore, we have
10,582 training images in total. During the test phase, we
compare our approach with previous methods on both the
validation and test sets in terms of the mean intersection-over-
union (mIoU) evaluation metric. Because the segmentation
annotations for the test set are not publicly available, we
submit the predicted results to the official PASCAL VOC
evaluation server to obtain the scores.

Network Settings. For the classification network, the
hyper-parameters are set as follows: mini-batch size (5),
weight decay (0.0002), and momentum (0.9). The initial
learning rate is set to 1e-3, which is divided by 10 after 20000
iterations. We run the classification network for 30000 it-
erations in total. We use the classification network without
the global average pooling layer and classification loss as
our integral attention model. The hyper-parameters of the
integral attention model is the same as that of the classifica-
tion network. We use the DeepLab-LargeFOV model [6] as
done in most previous work as our segmentation network.
The segmentation network is trained with a mini-batch of
10 images and terminated at 15, 000 iterations. All the other
hyper-parameters are the same as [6]. We report results
based on both VGG16 [38] and ResNet-101 [14] backbones.

4.2. Comparisons to the State-of-the-arts

In this subsection, we compare our approach with pre-
vious weakly-supervised semantic segmentation methods
relying on only image-level labels. Tab. 1 lists all the results
of these approaches and ours on the validation and test sets.
It can be easily observed that the mIoU scores of our ap-
proach improve all the previous state-of-the-art methods, no
matter which backbone is used. Among the previous state-
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Figure 4. Qualitative segmentation results on the PASCAL VOC 2012 validation set using attention maps generated by our OAA and OAA+,
respectively. We also show several failure cases on the bottom row.

of-the-art methods, MIL [32] and WebS-i2 [21] use more
training images (700K and 19K, respectively). Furthermore,
Hong et al. [15] utilizes rich information of the temporal
dynamics provided by additional video data, which helps
easily find out the integral semantic objects from video data.
Although only 10K images are used, the results of our OAA+

approach improve the above three approaches on the valida-
tion set by 21.1%, 9.7% and 5.0%, respectively. This fact
well demonstrates that the attention maps produced by our
integral attention model can effectively detect more integral
semantic regions towards all parts of the target objects.

Comparing to AE-PSL [41], our OAA achieves a better
mIoU score (61.6% v.s. 55.0%) with no need to train multi-
ple classification models. Furthermore, GAIN [24] adopts
a self-guidance erasing strategy in an end-to-end manner
but our segmentation results improve GAIN by more than
7% mIOU score (63.1% v.s. 55.3%). The comparisons to
those erasing-based methods reveal that collecting the inter-
mediate attention maps is more effective. In [43], Wei et
al. exploited the power of dilated convolutions to discover
integral objects. However, it usually introduces some irrele-
vant pixels because the convolutions with large dilation rates
often focus on the outside of the target regions. Differently,
our approach does not utilize convolutions with large dilation
rates and hence can weaken the effects of irreverent pixels.
As shown in Tab. 1, our approach improves the method of
[43] by nearly 2% on both the validation set and the test
set. Additionally, we also show the segmentation results

based on ResNet [14] backbone. Obviously, our proposed
approach achieves the best result on the PASCAL VOC 2012
segmentation benchmark.

4.3. Ablation Analysis

In this section, we perform a series of ablation experi-
ments and give detailed analysis to demonstrate the effec-
tiveness of the proposed strategies. Furthermore, we demon-
strate how the produced attention maps can benefit the se-
mantic segmentation task. Note that we use the VGGNet
version DeepLab-LargeFOV model in this subsection.

Accumulation Strategies. The attention fusion strategy is
used in OAA to accumulate the discovered discriminative re-
gions in the intermediate attention maps at different epochs.
In addition to the maximum fusion strategy, we also inves-
tigate an average fusion strategy, which can be formulated
as:

Mt =
1

t

(
(t− 1)Mt−1 +At

)
. (10)

As shown in Tab. 2, using attentions by CAM [49] without
OAA gives a mIoU score of 53.9% on the validation set.
When adding OAA with the average fusion strategy, the re-
sult can be improved to 57.0%. When replacing the average
fusion strategy with the maximum fusion strategy, we have
a mIoU score of 58.6%, which greatly improves the results
based on CAM [49]. In addition, we observe that OAA with
the maximum fusion strategy is more effective than that with
the average fusion strategy. This is because the averaging



Methods Supervision Val Test

Backbone: VGGNet [38]
CCNN [31] 10K 35.3% -
EM-Adapt [30] 10K 38.2% 39.6%
MIL [32] 700K 42.0% -
DCSM [36] 10K 44.1% 45.1%
SEC [23] 10K 50.7% 51.7%
AugFeed [33] 10K 54.3% 55.5%
STC [42] 50K 49.8% 51.2%
Roy et al. [34] 10K 52.8% 53.7%
Oh et al. [29] 10K 55.7% 56.7%
AE-PSL [41] 10K 55.0% 55.7%
Hong et al. [15] 970K 58.1% 58.7%
WebS-i2 [21] 19K 53.4% 55.3%
DCSP [4] 10K 58.6% 59.2%
TPL [22] 10K 53.1% 53.8%
GAIN [24] 10K 55.3% 56.8%
DSRG [20] 10K 59.0% 60.4%
MCOF [40] 10K 56.2% 57.6%
Ahn et al [1] 10K 58.4% 60.5%
Wei et al [43] 10K 60.4% 60.8%
SeeNet [19] 10K 61.1% 60.7%
OAA (Ours) 10K 61.6% 61.9%
OAA+ (Ours) 10K 63.1% 62.8%

Backbone: ResNet [14]
DCSP [4] 10K 60.8% 61.9%
DSRG [20] 10K 61.4% 63.2%
MCOF [40] 10K 60.3% 61.2%
Ahn et al [1] 10K 61.7% 63.7%
SeeNet [19] 10K 63.1% 62.8%
OAA (Ours) 10K 63.9% 65.6%
OAA+ (Ours) 10K 65.2% 66.4%

Table 1. Quantitative comparisons to previous state-of-the-art ap-
proaches on both the validation and test sets. OAA+ denotes that
the attention maps are generated from the integral attention model
described in Sec. 3.3.

fusion strategy averages all the attention values across the
intermediate attention maps, which decreases the attention
values in the final cumulative attention maps. Therefore, in
the following, we view the maximum fusion strategy as our
default fusion strategy for OAA. Note that the goal of this
paper is to demonstrate the effectiveness of OAA and hence
we simply choose the element-wise maximum fusion strat-
egy for OAA. Designing more complicated fusion strategy
is beyond the scope of this paper but we encourage readers
to further explore more effective ones.

Loss Function in OAA+. As stated in Sec. 3.3, the cu-
mulative attention maps are then used as soft labels to train
the integral attention model to produce attention maps with

more integral and accurate object regions. In Tab. 2, we
show quantitative results using different loss functions. It
can be observed that the performance is improved by 8.4%
when replacing the standard multi-label cross-entropy loss
(MCE) [42] with the proposed hybrid loss (HL). When ap-
plying the multi-label cross entropy loss, the output attention
maps always cover small object regions. On the contrary,
the proposed hybrid loss can further improve the quality of
the cumulative attention maps by our OAA.

No. AVE MAX MCE HL mIoU (val)

1 53.9%
2 3 57.0%
3 3 58.6%

4 3 3 51.2%
5 3 3 59.6%

Table 2. Comparisons of mIoU scores on the PASCAL VOC 2012
validation set when using different settings. AVE: OAA with the
average fusion strategy. MAX: OAA with the maximum fusion
strategy. MCE: OAA+ using the multi-label cross entropy loss in
Eq. (6). HL: OAA+ using the proposed hybrid loss in Eq. (9).

Results with Different Strategies. Other than visual com-
parisons, we also perform a series of ablation experiments
on the PASCAL VOC 2012 dataset. As shown in Tab. 2,
we show that the mIoU scores of using attention maps with
different strategies for training segmentation networks. In
the third and the last rows of Tab. 2, it can be seen that
using OAA+ can further improve the results by OAA by
1.0% on the validation set, which indicates our integral atten-
tion model with the proposed loss function can help further
improve the quality of the cumulative attention maps.

Visual Comparisons. In this paragraph, we show some
qualitative results on the PASCAL VOC 2012 dataset [9] and
give the corresponding attention maps produced by CAM
[49], OAA, and OAA+, respectively, for visual compar-
isons. As shown in Fig. 5, the images include different
kinds of scenes, such as images with objects of different
scales, crowded objects, and multiple categories. From all
shown examples, our cumulative attention maps can discover
nearly complete target objects at different scales, when com-
paring to the attention maps produced by CAM [49]. On
the fifth row, the images with multiple objects are shown. It
can be found that in this case our cumulative attention maps
can still cover most of the semantic regions. On the last
row, we show some examples containing multiple classes.
Obviously, our cumulative attention maps can successfully
distinguish different classes and detect the target objects
densely. In addition, the attention maps produced by OAA+

can discover more integral object regions than the cumula-
tive attention maps from OAA. Additionally, we also show
some segmentation results in Fig. 4.
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Figure 5. Visual comparisons among different attention maps produced by CAM [49], OAA, OAA+ and OAA+-MCE. OAA+ and OAA+-
MCE denote the integral attention model learned with the proposed hybrid loss in Eq. (9) and the multi-label cross entropy loss in Eq. (6)
respectively.

No. #Training Images Proportion mIoU(val)

1 2, 116 20% 54.6%
2 5, 291 50% 57.3%
3 8, 466 80% 58.9%
4 10, 582 100% 59.6%

Table 3. Comparisons of mIoU scores on PASCAL VOC 2012
validation set when using different number of training images. Note
that images are selected randomly. Proportion: the percentage of
the images used for training. #Training Images: the number of
training images.

Number of Training Images. To further investigate the
quality of the attention maps, we attempt to use different
numbers of training images to train the segmentation net-
work. We use the attention maps produced by OAA+ to
produce the proxy segmentation annotations. As shown in
Tab. 3, the mIoU scores are improved gradually as more
images are used for training. More interestingly, when using
only 2116 training images, our segmentation network can
still achieve a performance score of 54.6%, which is better
than the segmentation results based on CAM [49]. This indi-
rectly suggests that our attention maps are with high quality
and facilitate the segmentation task.

5. Conclusion

In this paper, we explore a simple but effective framework
called OAA to discover more integral object regions. We
maintain a series of cumulative attention maps to preserve
the different discriminative regions in attention maps gen-
erated by the classification network during training stages.
Additionally, we utilize the cumulative attention maps as
soft labels to train an integral attention model to enhance
the attention maps by OAA. Our approach is easy to follow
and can be simply plugged into any classification networks
to discover the target object regions holistically. Thorough
experiments show that when applying our attention maps to
the weakly-supervised segmentation task, our segmentation
network works better than the previous state-of-the-arts. In
the future, we plan to conduct experiments on large-scale
datasets, such as MS COCO [26] and ImageNet [8].
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