
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Richer Convolutional Features for Edge
Detection

Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Jia-Wang Bian, Le Zhang, Xiang Bai, and Jinhui Tang

Abstract—Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed
forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures
caused by variations of scales and aspect ratios. In this paper, we propose an accurate edge detector using richer convolutional features
(RCF). RCF encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature
hierarchies, and is amenable to training via backpropagation. RCF fully exploits multiscale and multilevel information of objects to perform
the image-to-image prediction holistically. Using VGG16 network, we achieve state-of-the-art performance on several available datasets.
When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS).
Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS. We also demonstrate the versatility of the proposed
method by applying RCF edges for classical image segmentation.

Index Terms—Edge detection, deep learning, richer convolutional features.

F

1 INTRODUCTION

E DGE detection can be viewed as a method to extract visually
salient edges and object boundaries from natural images. Due

to its far-reaching applications in many high-level applications
including object detection [2], [3], object proposal generation [4],
[5], and image segmentation [6], [7], edge detection is a core low-
level problem in computer vision.

The fundamental scientific question here is what is the ap-
propriate representation which is rich enough for a predictor to
distinguish edges/boundaries from the image data. To answer this,
traditional methods first extract the local cues of brightness, color,
gradient and texture, or other manually designed features like Pb
[8] and gPb [9], then sophisticated learning paradigms [10] are
used to classify edge and non-edge pixels. Although low-level
features based edge detectors are somehow promising, their limi-
tations are obvious as well. For example, edges and boundaries are
often defined to be semantically meaningful, however, it is difficult
to use low-level cues to represent high-level information. Recently,
convolutional neural networks (CNNs) have become popular in
computer vision [11], [12]. Since CNNs have a strong capability
to automatically learn the high-level representations for natural
images, there is a recent trend of using CNNs to perform edge
detection. Some well-known CNN-based methods have pushed
forward this field significantly, such as DeepEdge [13], N4-Fields
[14], DeepContour [15], and HED [16]. Our algorithm falls into
this category as well.

As illustrated in Fig. 1, we build a simple network to produce
side outputs of intermediate layers using VGG16 [11] with HED
architecture [16]. We can see that the information obtained by
different convolution (i.e. conv) layers gradually becomes coarser.

* M.M. Cheng is the corresponding author. URL: http://mmcheng.net/rcfedge/

• Y. Liu, M.M. Cheng, and J.W. Bian, are with the College of Computer
Science, Nankai University, Tianjin 300350, China.

• L. Zhang is with the Advanced Digital Sciences Center.
• X. Bai is with Huazhong University of Science and Technology.
• J. Tang is with School of Computer Sience and Engineering, Nanjing

University of Science and Technology, Nanjing 210094, China.
• A preliminary version of this work has been published in CVPR 2017 [1].

(a) original image (b) ground truth (c) conv3 1 (d) conv3 2

(e) conv3 3 (f) conv4 1 (g) conv4 2 (h) conv4 3

Fig. 1: We build a simple network based on VGG16 [11] to
produce side outputs (c-h). One can see that convolutional features
become coarser gradually, and the intermediate layers (c,d,f,g)
contain essential fine details that do not appear in other layers.

More importantly, intermediate conv layers contain essential fine
details. However, previous CNN architectures only use the final
conv layer or the layers before the pooling layers of neural net-
works, but ignore the intermediate layers. On the other hand, since
richer convolutional features are highly effective for many vision
tasks, many researchers make efforts to develop deeper networks
[17]. However, it is difficult to get the networks to converge
when going deeper because of vanishing/exploding gradients and
training data shortage (e.g. for edge detection). So why don’t we
make full use of the CNN features we have now? Based on these
observations, we propose richer convolutional features (RCF), a
novel deep structure fully exploiting the CNN features from all
the conv layers, to perform the pixel-wise prediction for edge

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

detection in an image-to-image fashion. RCF can automatically
learn to combine complementary information from all layers of
CNNs and thus can obtain accurate representations for objects or
object parts in different scales. The evaluation results demonstrate
RCF performs very well on edge detection.

After the publication of the conference version [1], our pro-
posed RCF edges have been widely used in weakly supervised se-
mantic segmentation [18], style transfer [19], and stereo matching
[20]. Besides, the idea of utilizing all the conv layers in a unified
framework can be potentially generalized to other vision tasks.
This has been demonstrated in skeleton detection [21], medial axis
detection [22], people detection [23], and surface fatigue crack
identification [24].

When evaluating our method on BSDS500 dataset [9] for edge
detection, we achieve a good trade-off between effectiveness and
efficiency with the ODS F-measure of 0.811 and the speed of
8 FPS. It even outperforms human perception (ODS F-measure
0.803). In addition, a fast version of RCF is also presented, which
achieves ODS F-measure of 0.806 with 30 FPS. When applying
our RCF edges to classic image segmentation, we can obtain high-
quality perceptual regions as well.

2 RELATED WORK

As one of the most fundamental problem in computer vision, edge
detection has been extensively studied for several decades. Early
pioneering methods mainly focus on the utilization of intensity
and color gradients, such as Canny [25]. However, these early
methods are usually not accurate enough for real-life applications.
To this end, feature learning based methods have been proposed.
These methods, such as Pb [8], gPb [9], and SE [10], usually
employ sophisticated learning paradigms to predict edge strength
with low-level features such as intensity, gradient, and texture.
Although these methods are shown to be promising in some cases,
these handcrafted features have limited ability to represent high-
level information for semantically meaningful edge detection.

Deep learning based algorithms have made vast inroads into
many computer vision tasks. Under this umbrella, many deep edge
detectors have been introduced recently. Ganin et al. [14] proposed
N4-Fields that combines CNNs with the nearest neighbor search.
Shen et al. [15] partitioned contour data into subclasses and fitted
each subclass by learning the model parameters. Recently, Xie
et al. [16] developed an efficient and accurate edge detector,
HED, which performs image-to-image training and prediction.
This holistically-nested architecture connects their side output
layers, which is composed of one conv layer with kernel size 1,
one deconv layer, and one softmax layer, to the last conv layer
of each stage in VGG16 [11]. Moreover, Liu et al. [26] used
relaxed labels generated by bottom-up edges to guide the training
process of HED. Wang et al. [27] leveraged a top-down backward
refinement pathway to effectively learn crisp boundaries. Xu et al.
[28] introduced a hierarchical deep model to robustly fuse the edge
representations learned at different scales. Yu et al. [29] extended
the success in edge detection to semantic edge detection which
simultaneously detected and recognized the semantic categories
of edge pixels.

Although these aforementioned CNN-based models have
pushed the state of the arts to some extent, they all turn out to
be lacking in our view because that they are not able to fully
exploit the rich feature hierarchies from CNNs. These methods
usually adopt CNN features only from the last layer of each conv

stage. To address this, we propose a fully convolutional network
to combine features from all conv layers efficiently.

3 RICHER CONVOLUTIONAL FEATURES (RCF)
3.1 Network Architecture

We take inspirations from existing work [12], [16] and embark on
the VGG16 network [11]. VGG16 network composes of 13 conv
layers and 3 fully connected layers. Its conv layers are divided into
five stages, in which a pooling layer is connected after each stage.
The useful information captured by each conv layer becomes
coarser with its receptive field size increasing. Detailed receptive
field sizes of different layers can be found in [16]. The use of
this rich hierarchical information is hypothesized to help edge
detection. The starting point of our network design lies here.

The novel network introduced by us is shown in Fig. 2.
Compared with VGG16, our modifications can be summarized
as following:

• We cut all the fully connected layers and the pool5 layer.
On the one side, we remove the fully connected layers

3×3-64 conv

2×2 pool

3×3-128 conv

1×1-21 conv
1×1-1 conv loss/sigmoid

concat

stage 1

stage 2

stage 3

stage 4

image

∑

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-21 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

1×1-1 conv

3×3-64 conv

3×3-128 conv

3×3-256 conv

3×3-256 conv

3×3-256 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

3×3-512 conv

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

loss/sigmoid

2×2 pool

2×2 pool

2×2 pool
stage 5

deconv

fusion

∑

∑

∑

∑

deconv

deconv

deconv

Fig. 2: Our RCF network architecture. The input is an image with
arbitrary sizes, and our network outputs an edge possibility map
in the same size.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

to have a fully convolutional network for an image-to-
image prediction. On the other hand, adding pool5 layer
will increase the stride by two times, which usually leads
to degeneration of edge localization.

• Each conv layer in VGG16 is connected to a conv layer
with kernel size 1 × 1 and channel depth 21. And the
resulting feature maps in each stage are accumulated using
an eltwise layer to attain hybrid features.

• An 1× 1− 1 conv layer follows each eltwise layer. Then,
a deconv layer is used to up-sample this feature map.

• A cross-entropy loss/sigmoid layer is connected to the up-
sampling layer in each stage.

• All the up-sampling layers are concatenated. Then an 1×1
conv layer is used to fuse feature maps from each stage.
At last, a cross-entropy loss/sigmoid layer is followed to
get the fusion loss/output.

In RCF, features from all conv layers are well-encapsulated into
a final representation in a holistic manner which is amenable
to training by back-propagation. As receptive field sizes of conv
layers in VGG16 are different from each other, RCF endows a bet-
ter mechanism than existing ones to learn multiscale information
coming from all levels of convolutional features which we believe
are all pertinent for edge detection. In RCF, high-level features are
coarser and can obtain strong response at the larger object or object
part boundaries as illustrated in Fig. 1 while features from lower-
part of CNNs are still beneficial in providing complementary fine
details.

3.2 Annotator-robust Loss Function
Edge datasets in this community are usually labeled by several
annotators using their knowledge about the presence of objects
or object parts. Though humans vary in cognition, these human-
labeled edges for the same image share high consistency [8]
For each image, we average all the ground truth to generate an
edge probability map, which ranges from 0 to 1. Here, 0 means
no annotator labeled at this pixel, and 1 means all annotators
have labeled at this pixel. We consider the pixels with edge
probabilities higher than η as positive samples and the pixels with
edge probabilities equal to 0 as negative samples. Otherwise, if a
pixel is marked by fewer than η of the annotators, this pixel may
be semantically controversial to be an edge point. Thus, regarding
those pixels as either positive or negative samples may confuse the
networks. Hence we ignore them, but HED tasks them as negative
samples and uses a fix η of 0.5.

We compute the loss of each pixel with respect to its label as

l(Xi;W) =

α · log (1− P (Xi;W)) if yi = 0

0 if 0 < yi ≤ η
β · log P (Xi;W) otherwise,

(1)

in which

α = λ · |Y +|
|Y +|+ |Y −|

β =
|Y −|

|Y +|+ |Y −|
.

(2)

Y + and Y − denote the positive sample set and the negative
sample set, respectively. The hyper-parameter λ is used to balance
the number of positive and negative samples. The activation value
(CNN feature vector) and ground truth edge probability at pixel
i are presented by Xi and yi, respectively. P (X) is the standard

sigmoid function, and W denotes all the parameters that will be
learned in our architecture. Therefore, our improved loss function
can be formulated as

L(W) =

|I|∑
i=1

(K∑
k=1

l(X
(k)
i ;W) + l(Xfuse

i ;W)
)
, (3)

where X(k)
i is the activation value from stage k while Xfuse

i is
from the fusion layer. |I| is the number of pixels in image I , and
K is the number of stages (equals to 5 here).

3.3 Multiscale Hierarchical Edge Detection
In single scale edge detection, we feed an original image into our
fine-tuned RCF network, then, the output is an edge probability
map. To further improve the quality of edges, we use image
pyramids during the test phase. Specifically, we resize an image
to construct an image pyramid, and each of these images is fed
into our single-scale detector separately. Then, all resulting edge
probability maps are resized to the original image size using
bilinear interpolation. At last, these maps are fused to get the
final prediction map. We adopt simple average fusion in this study
although other advanced strategies are also applicable. In this way,
our preliminary version [1] firstly demonstrates multiscale testing
is still beneficial for edge detection although RCF itself is able to
encode multiscale information. Considering the trade-off between
accuracy and speed, we use three scales 0.5, 1.0, and 1.5 in this
paper. When evaluating RCF on BSDS500 [9] dataset, this simple
multiscale strategy improves the ODS F-measure from 0.806 to
0.811 with the speed of 8 FPS which we believe is good enough
for real-life applications. See Sec. 4.1 for details.

3.4 Comparison With HED
The most obvious differences between our RCF and HED [16] lie
in the three following aspects.

First, HED only considers the last conv layer in each stage of
VGG16, in which lots of helpful information for edge detection
is missed. In contrast to it, RCF uses richer features from all the
conv layers, making it more possible to capture more object or
object-part boundaries across a larger range of scales.

Second, a novel loss function is proposed to treat training
examples properly. We consider the edge pixels that η of the
annotators labeled as positive samples and the pixels that no
annotator labeled as negative samples. Besides, we ignore edge
pixels that are marked by a few annotators because of their
confusing attributes. In contrast, HED view edge pixels that are
marked by less than half of the annotators as negative samples,
which may confuse the network training because these pixels are
not true non-edge points. Our new loss have been used in [27].

Thirdly, our preliminary version [1] first proposes the multi-
scale test for edge detection. Recent edge detectors such as HED
usually use multiscale network features, but we demonstrate the
simple multiscale test is still helpful to edge detection. This idea
is also accepted by recent work [27].

4 EXPERIMENTS ON EDGE DETECTION

We implement our network using the Caffe framework [30]. The
default setting using VGG16 [11] backbone net, and we also
test ResNet [17] backbone net. In RCF training, the weights of
1 × 1 conv layers in stage 1-5 are initialized from zero-mean

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Gaussian distributions with standard deviation 0.01 and the biases
are initialized to 0. The weights of the 1 × 1 conv layer in the
fusion stage are initialized to 0.2 and the biases are initialized
to 0. The weights of other layers are initialized using pre-trained
ImageNet models. Stochastic gradient descent (SGD) minibatch
samples 10 images randomly in each iteration. For other SGD
hyper-parameters, the global learning rate is set to 1e-6 and will
be divided by 10 after every 10k iterations. The momentum and
weight decay are set to 0.9 and 0.0002, respectively. We run SGD
for 40k iterations totally. The parameters η and λ in loss function
are set depending on the training data. All experiments in this
paper are finished using a NVIDIA TITAN X GPU.

Given an edge probability map, a threshold is needed to
produce the binary edge map. There are two choices to set this
threshold. The first one is referred as optimal dataset scale (ODS)
which employs a fixed threshold for all images in a dataset.
The second is called optimal image scale (OIS) which selects
an optimal threshold for each image. We report the F-measure
(2·Precision·Recall
Precision+Recall) of both ODS and OIS in our experiments.

4.1 BSDS500 Dataset

BSDS500 [9] is a widely used dataset in edge detection. It is com-
posed of 200 training, 100 validation and 200 test images, each
of which is labeled by 4 to 9 annotators. We utilize the training
and validation sets for fine-tuning, and test set for evaluation. Data
augmentation is the same as [16]. Inspired by the previous work
[26], [31], [32], we mix the augmented data of BSDS500 with
flipped VOC Context dataset [33] as training data. When training,
we set loss parameters η and λ to 0.5 and 1.1, respectively. When
evaluating, standard non-maximum suppression (NMS) [10] is
applied to thin detected edges. We compare our method with
some non-deep-learning algorithms, including Canny [25], Pb [8],
SE [10], and OEF [34], and some recent deep learning based
approaches, including DeepContour [15], DeepEdge [13], HED
[16], HFL [35], MIL+G-DSN+MS+NCuts [32], CASENet [29],
AMH [28], CED [27] and etc.

Fig. 4a shows the evaluation results. The performance of
human eye in edge detection is known as 0.803 ODS F-measure.
Both single-scale and multiscale (MS) versions of RCF get better
results than average human performance. When comparing with
HED [16], ODS F-measures of our RCF-MS and RCF are 2.3%
and 1.8% higher than it, respectively. Moreover, ResNet50 and
ResNet101 can further improve the performance with more conv
layers. These results demonstrate the effectiveness of the richer
convolutional features.

We show statistic comparison in Fig. 3. From RCF to RCF-
MS, the ODS F-measure increases from 0.806 to 0.811, though the
speed drops from 30 FPS to 8 FPS. It proves the validity of our
multiscale strategy. RCF with ResNet101 [17] achieves a state-
of-the-art 0.819 ODS F-measure. We also observe an interesting
phenomenon in which the RCF curves are not as long as other
methods when evaluated using the default parameters in BSDS500
benchmark. It may suggest that RCF tends to only remain very
confident edges. Our methods also achieve better results than
recent edge detectors, such as AMH [28] and CED [27]. Note that
AMH and CED use complex networks with more weights than
our simple RCF. Our RCF network only adds some 1 × 1 conv
layers to HED, so the time consumption is on par with HED. We
can see that RCF achieves a good trade-off between effectiveness
and efficiency.

Method ODS OIS FPS

Canny [25] 0.611 0.676 28
Pb [8] 0.672 0.695 -

SE [10] 0.743 0.763 2.5
OEF [34] 0.746 0.770 2/3

DeepContour [15] 0.757 0.776 1/30†

DeepEdge [13] 0.753 0.772 1/1000†

HFL [35] 0.767 0.788 5/6†

N4-Fields [14] 0.753 0.769 1/6†

HED [16] 0.788 0.808 30†

RDS [26] 0.792 0.810 30†

CEDN [31] 0.788 0.804 10†

MIL+G-DSN+VOC+MS
+NCuts [32] 0.813 0.831 1†

CASENet [29] 0.767 0.784 18†

AMH-ResNet50 [28] 0.798 0.829 -
CED-VGG16 [27] 0.794 0.811 -

CED-ResNet50+VOC+MS [27] 0.817 0.834 -
RCF 0.806 0.823 30†

RCF-MS 0.811 0.830 8†

RCF-ResNet50 0.808 0.825 20†

RCF-ResNet50-MS 0.814 0.833 5.4†

RCF-ResNet101 0.812 0.829 12.2†

RCF-ResNet101-MS 0.819 0.836 3.6†

Fig. 3: The comparison with some competitors on the BSDS500
[9] dataset. † means GPU time.

4.2 NYUD Dataset
NYUD [36] dataset is composed of 1449 densely labeled pairs
of aligned RGB and depth images captured from indoor scenes.
Recently, many works have conducted edge evaluation on it, such
as [10]. Gupta et al. [37] split NYUD dataset into 381 training,
414 validation, and 654 test images. We follow their settings and
train RCF using the training and validation sets as in HED [16].

We utilize depth information by using HHA [38], in which
depth information is encoded into three channels: horizontal
disparity, height above ground, and angle with gravity. Thus HHA
features can be represented as a color image by normalization.
Then, two models for RGB images and HHA feature images are
trained separately. In the training process, λ is set to 1.2 for both
RGB and HHA. Since NYUD only has one ground truth for each
image, η is useless here. Other network settings are the same as
used for BSDS500. At the test phase, the final edge predictions
are defined by averaging the outputs of RGB model and HHA
model. Since there is already an average operation, the multiscale
test is not evaluated here. When evaluating, we increase localiza-
tion tolerance, which controls the maximum allowed distance in
matches between predicted edges and ground truth, from 0.0075
to 0.011, because images in NYUD dataset are larger than images
in BSDS500 dataset.

We compare our single-scale version of RCF with some
well-established competitors. OEF [34] only uses RGB images,
while other methods employ both depth and RGB information.
The precision-recall curves are shown in Fig. 4b. RCF achieves
competitive performance on NYUD dataset, and it is significantly
better than HED. Fig. 5 shows the statistical comparison. We can
see that RCF outperforms HED not only on separate HHA or
RGB data, but also on the merged RGB-HHA data. For HHA and
RGB data, ODS F-measure of RCF is 2.2% and 2.6% higher than

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BSDS500

[F=.803] Human
[F=.806] RCF
[F=.811] RCF-MS
[F=.814] RCF-ResNet50-MS
[F=.819] RCF-ResNet101-MS
[F=.788] HED
[F=.767] HFL
[F=.753] DeepEdge
[F=.757] DeepContour
[F=.746] OEF
[F=.743] SE
[F=.672] Pb
[F=.611] Canny

(a)
Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
NYUD

[F=.765] RCF
[F=.781] RCF-ResNet50
[F=.741] HED
[F=.651] OEF
[F=.706] SE+NG+
[F=.687] gPb+NG
[F=.695] SE

(b)

Fig. 4: The evaluation results on the standard BSDS500 [9] and NYUD [36] datasets. The multiscale version of RCF is only evaluated
on the BSDS500 dataset. Here, the solid lines represent CNN based methods, while the dotted lines represent non-deep algorithms.

Method ODS OIS FPS

OEF [34] 0.651 0.667 1/2
gPb+NG [37] 0.687 0.716 1/375

SE [10] 0.695 0.708 5
SE+NG+ [38] 0.706 0.734 1/15

HED-HHA [16] 0.681 0.695 20†

HED-RGB [16] 0.717 0.732 20†

HED-RGB-HHA [16] 0.741 0.757 10†

RCF-HHA 0.703 0.717 20†

RCF-RGB 0.743 0.757 20†

RCF-RGB-HHA 0.765 0.780 10†

RCF-ResNet50-RGB-HHA 0.781 0.793 7†

Fig. 5: The comparison with some competitors on the NYUD
dataset [36]. †means GPU time.

HED, respectively. For merging RGB-HHA data, RCF is 2.4%
higher than HED. Furthermore, HHA edges perform worse than
RGB, but averaging HHA and RGB edges achieves much higher
results. It suggests that combining different types of information
is very useful for edge detection, and this may explain why OEF
performs much worse than other methods. RCF with ResNet50
[17] improves a 1.6% ODS F-measure when compared with RCF
with VGG16 [11].

4.3 Multicue Dataset
Multicue dataset is proposed by Mély et al. [39] to study psy-
chophysics theory for boundary detection. It is composed of
short binocular video sequences of 100 challenging natural scenes
captured by a stereo camera. Each scene contains a left and a
right view short (10-frame) color sequences. The last frame of the
left images for each scene is labeled for two annotations: object
boundaries and low-level edges. Unlike people who usually use
boundary and edge interchangeably, they strictly defined boundary
and edge according to visual perception at different stages. Thus,
boundaries are referred to the boundary pixels of meaningful
objects, and edges are abrupt pixels at which the luminance, color,

or stereo changes sharply. In this subsection, we use boundary and
edge as defined by Mély et al. [39] while considering boundary
and edge having the same meaning in previous sections.

As done in Mély et al. [39] and HED [16], we randomly split
these human-labeled images into 80 training and 20 test samples,
and average the scores of three independent trials as final results.
When training on Multicue, λ is set to 1.1, and η is set to 0.4
for boundary task and 0.3 for edge task. For boundary detection
task, we use learning rate 1e-6 and run SGD for 2k iterations. For
edge detection task, we use learning rate 1e-7 and run SGD for 4k
iterations. Since the image resolution of Multicue is very high, we
randomly crop 500 × 500 patches from original images at each
iteration.

We use VGG16 [11] as the backbone net. The evaluation
results are summarized in Fig. 7. Our proposed RCF achieves
substantially higher results than HED. For boundary task, RCF-
MS is 1.1% ODS F-measure higher and 1.4% OIS F-measure
higher than HED. For edge task, RCF-MS is 0.9% ODS F-measure
higher than HED. Note that the fluctuation of RCF is also smaller
than HED, which suggests RCF is more robust over different kinds
of images. Some qualitative results are shown in Fig. 6.

4.4 Network Discussion

To further explore the effectiveness of our network architecture,
we implement some mixed networks using VGG16 [11] by
connecting our richer feature side outputs to some convolution
stages while connecting side outputs of HED to the other stages.
With training only on BSDS500 [9] dataset and testing on the
single scale, evaluation results of these mixed networks are shown
in Fig. 8. The last two lines of this table correspond to HED
and RCF, respectively. We can observe that all of these mixed
networks perform better than HED and worse than RCF that is
fully connected to RCF side outputs. It clearly demonstrates the
importance of our strategy of richer convolutional features.

In order to investigate whether including additional nonlinear-
ity helps, we connecting ReLU layer after 1×1−21 or 1×1−1
conv layers in each stage. However, the network performs worse.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 6: Some examples of RCF. Top: BSDS500 [9]. Bottom: NYUD [36]. From Left to Right: origin image, ground truth, RCF edge
map, RCF UCM map, and repeated this order.

Method ODS OIS

Human-Boundary [39] 0.760 (0.017) –
Multicue-Boundary [39] 0.720 (0.014) –

HED-Boundary [16] 0.814 (0.011) 0.822 (0.008)
RCF-Boundary 0.817 (0.004) 0.825 (0.005)

RCF-MS-Boundary 0.825 (0.008) 0.836 (0.007)
Human-Edge [39] 0.750 (0.024) –

Multicue-Edge [39] 0.830 (0.002) –
HED-Edge [16] 0.851 (0.014) 0.864 (0.011)

RCF-Edge 0.857 (0.004) 0.862 (0.004)
RCF-MS-Edge 0.860 (0.005) 0.864 (0.004)

Fig. 7: The comparisons on the Multicue dataset [39]. The num-
bers in the parentheses mean standard deviations.

RCF Stage HED Stage ODS OIS
1, 2 3, 4, 5 0.792 0.810
2, 4 1, 3, 5 0.795 0.812
4, 5 1, 2, 3 0.790 0.810

1, 3, 5 2, 4 0.794 0.810
3, 4, 5 1, 2 0.796 0.812

– 1, 2, 3, 4, 5 0.788 0.808
1, 2, 3, 4, 5 – 0.798 0.815

Fig. 8: Results of some thought networks.

Especially, when we attempt to add nonlinear layers to 1× 1− 1
conv layers, the network can not converge properly.

5 EXPERIMENTS ON IMAGE SEGMENTATION

The predicted edges of natural images are often used in another
low-level vision technique, image segmentation, which aims to
cluster similar pixels to form perceptual regions. To transform a
predicted edge map into a segmentation, Arbeláez [9] introduced
the Ultrametric Contour Map (UCM) that can generate different
image partitions when thresholding this hierarchical contour map
at various contour probability values. MCG [6] develops a fast
normalized cuts algorithm to accelerate [9] and makes effective
use of multiscale information to generate an accurate hierarchi-
cal segmentation tree. Note that MCG needs edge orientations
as input. These orientations are usually computed using simple
morphological operations. COB [40] simultaneously predicts the
magnitudes and orientations of edges using HED-based CNNs,
and then applies MCG framework to convert these predictions to
UCM. Since much more accurate edge orientations are used, COB
achieves the state-of-the-art segmentation results.

In order to demonstrate the versatility of the proposed method,
here we evaluate the edges of RCF in the context of image
segmentation. Specifically, we apply the COB framework but

Methods
Boundaries (Fb) Regions (Fop)
ODS OIS ODS OIS

NCut [42] 0.641 0.674 0.213 0.270
MShift [43] 0.601 0.644 0.229 0.292
EGB [44] 0.636 0.674 0.158 0.240

gPb-UCM [9] 0.726 0.760 0.348 0.385
ISCRA [45] 0.724 0.752 0.352 0.418

MCG [6] 0.747 0.779 0.380 0.433
LEP [46] 0.757 0.793 0.417 0.468
COB [40] 0.793 0.820 0.415 0.466

RCF 0.806 0.833 0.439 0.496
RCF-ResNet50 0.808 0.833 0.441 0.500
RCF-ResNet101 0.810 0.836 0.440 0.501

Fig. 9: Evaluation results of boundaries (Fb [8]) and regions (Fop

[41]) on the BSDS500 test set [9].

replacing the HED edges with our RCF edges to perform im-
age segmentation. We evaluate the resulting segmenter on the
BSDS500 [9] and NYUD [36] datasets. Note that COB uses
ResNet50 as its backbone net, so we also test RCF with ResNet
for fair comparison. Besides the boundary measure (Fb) [8] used
in Sec. 4, we also use the evaluation metric of precision-recall
for objects and parts (Fop) [41] to evaluate the region similarity
between the segmentation and the corresponding ground truth.

BSDS500 Dataset
On the challenging BSDS500 dataset [9], we compare RCF with
some well-known generic image segmenters, including NCut [42],
MShift [43], EGB [44], gPb-UCM [9], ISCRA [45], MCG [6],
LEP [46], and COB [40]. The evaluation results are shown in
Fig. 10. RCF achieves the new state of the art on this dataset,
both in terms of boundary and region quality. COB [40] gets
the second place. We show the numeric comparison in Fig. 9.
For the boundary measure, both the ODS and OIS F-measure of
RCF are 1.3% higher than COB. For the region measure, the
ODS and OIS F-measure of RCF are 2.4% and 3.0% higher
than COB, respectively. Using the ResNet as the backbone net,
RCF can further improve performance. Since COB uses the edges
produced by HED [16], these results demonstrate the effectiveness
of RCF architecture. From Fig. 10, we can also see that although
the boundary measure of RCF segmentation have reached human
performance, the region measure is still far away from the human
performance. It indicates that better perception regions should be
the main pursuit of classical image segmentation in the future.

NYUD Dataset
On the RGB-D dataset of NYUD [36], we compare not only
with some RGB based methods, e.g. gPb-UCM [9] and MCG

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human
[F=.806] RCF
[F=.808] RCF-ResNet50
[F=.810] RCF-ResNet101
[F=.793] COB
[F=.757] LEP
[F=.747] MCG
[F=.601] MShift
[F=.726] gPb-UCM
[F=.724] ISCRA
[F=.641] NCut
[F=.636] EGB

BSDS500 - Boundary Measure (Fb)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Human
[F=.439] RCF
[F=.441] RCF-ResNet50
[F=.440] RCF-ResNet101
[F=.415] COB
[F=.417] LEP
[F=.380] MCG
[F=.229] MShift
[F=.348] gPb-UCM
[F=.352] ISCRA
[F=.213] NCut
[F=.158] EGB

BSDS500 - Region Measure (Fop)

Fig. 10: The precision-recall curves for the evaluation of boundary measure (Fb [8]) and region measure (Fop [41]) of classical image
segmentation on the BSDS500 test set [9].

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[F=.775] RCF
[F=.782] RCF-ResNet50
[F=.783] COB
[F=.651] MCG
[F=.687] gPb+NG
[F=.706] SE+NG+
[F=.631] gPb-UCM

NYUD - Boundary Measure (Fb)

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

[F=.364] RCF
[F=.369] RCF-ResNet50
[F=.353] COB
[F=.264] MCG
[F=.286] gPb+NG
[F=.319] SE+NG+
[F=.242] gPb-UCM

NYUD - Region Measure (Fop)

Fig. 11: The precision-recall curves for the evaluation of boundary measure (Fb [8]) and region measure (Fop [41]) of classical image
segmentation on the NYUD test set [36].

[6], but also with some RGB-D based methods, e.g. gPb+NG
[37], SE+NG+ [38], and COB [40]. The precision-recall curves
of boundary and region measures are displayed in Fig. 11. The
numeric comparison is summarized in Fig. 12. Our RCF with
VGG16 achieves higher F-measure score than COB on the region
measure, while performs slightly worse than original COB on
the boundary measure. With ResNet50 as the backbone net, RCF
achieves similar performance with COB on the boundary measure
but 1.6% higher on the region measure. Moreover, both COB and
RCF outperform traditional methods by a large margin, which
demonstrates the importance of accurate edges in the classic image
segmentation.

6 CONCLUSION

In this paper, we introduce richer convolutional features (RCF),
a novel CNN architecture which makes good usage of feature

hierarchies in CNNs, for edge detection. RCF encapsulates both
semantic and fine detail features by leveraging all convolutional
features. RCF is both accurate and efficient, making it promising
to be applied in other vision tasks. We also achieve competitive re-
sults when applying RCF edges for classical image segmentation.
RCF architecture can be seen as a development direction of fully
convolutional networks, like FCN [12] and HED [16]. It would be
interesting to explore the effectiveness of our network architecture
in other hot topics [21], [22], [23], [24]. Source code is available
at https://mmcheng.net/rcfedge/.

ACKNOWLEDGMENTS

This research was supported by NSFC (NO. 61620106008,
61572264), the national youth talent support program, Tianjin
Natural Science Foundation for Distinguished Young Scholars
(NO. 17JCJQJC43700), Huawei Innovation Research Program.

https://mmcheng.net/rcfedge/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Methods
Boundaries (Fb) Regions (Fop)
ODS OIS ODS OIS

gPb-UCM [9] 0.631 0.661 0.242 0.283
MCG [6] 0.651 0.681 0.264 0.300

gPb+NG [37] 0.687 0.716 0.286 0.324
SE+NG+ [38] 0.706 0.734 0.319 0.359

COB [40] 0.783 0.804 0.353 0.396
RCF 0.775 0.798 0.364 0.409

RCF-ResNet50 0.782 0.803 0.369 0.406

Fig. 12: Evaluation results of boundaries (Fb [8]) and regions (Fop

[41]) on the NYUD test set [36].

REFERENCES

[1] Y. Liu, M.-M. Cheng, X. Hu, K. Wang, and X. Bai, “Richer convolutional
features for edge detection,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2017, pp. 5872–5881.

[2] S. Ullman and R. Basri, “Recognition by linear combinations of models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 10, pp. 992–1006,
1991.

[3] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent
contour segments for object detection,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 30, no. 1, pp. 36–51, 2008.

[4] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object proposals from
edges,” in Eur. Conf. Comput. Vis., 2014, pp. 391–405.

[5] Z. Zhang, Y. Liu, X. Chen, Y. Zhu, M.-M. Cheng, V. Saligrama, and P. H.
Torr, “Sequential optimization for efficient high-quality object proposal
generation,” IEEE Trans. Pattern Anal. Mach. Intell., 2017.

[6] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik,
“Multiscale combinatorial grouping,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2014, pp. 328–335.

[7] M.-M. Cheng, Y. Liu, Q. Hou, J. Bian, P. Torr, S.-M. Hu, and Z. Tu,
“HFS: Hierarchical feature selection for efficient image segmentation,”
in Eur. Conf. Comput. Vis., 2016, pp. 867–882.

[8] D. R. Martin, C. C. Fowlkes, and J. Malik, “Learning to detect natural
image boundaries using local brightness, color, and texture cues,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 26, no. 5, pp. 530–549, 2004.

[9] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, 2011.

[10] P. Dollár and C. L. Zitnick, “Fast edge detection using structured forests,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 8, pp. 1558–1570,
2015.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Int. Conf. Learn. Represent., 2015.

[12] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2015, pp. 3431–3440.

[13] G. Bertasius, J. Shi, and L. Torresani, “DeepEdge: A multi-scale bi-
furcated deep network for top-down contour detection,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2015, pp. 4380–4389.

[14] Y. Ganin and V. Lempitsky, “N4-Fields: Neural network nearest neighbor
fields for image transforms,” in ACCV, 2014, pp. 536–551.

[15] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “DeepContour: A
deep convolutional feature learned by positive-sharing loss for contour
detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 3982–
3991.

[16] S. Xie and Z. Tu, “Holistically-nested edge detection,” Int. J. Comput.
Vis., vol. 125, no. 1-3, pp. 3–18, 2017.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–
778.

[18] Q. Hou, M.-M. Cheng, J. Liu, and P. H. Torr, “Webseg: Learning seman-
tic segmentation from web searches,” arXiv preprint arXiv:1803.09859,
2018.

[19] X.-C. Liu, M.-M. Cheng, Y.-K. Lai, and P. L. Rosin, “Depth-aware neural
style transfer,” in Proceedings of the Symposium on Non-Photorealistic
Animation and Rendering, 2017.

[20] X. Song, X. Zhao, H. Hu, and L. Fang, “EdgeStereo: A context inte-
grated residual pyramid network for stereo matching,” arXiv preprint
arXiv:1803.05196, 2018.

[21] K. Zhao, W. Shen, S. Gao, D. Li, and M.-M. Cheng, “Hi-Fi: Hierarchical
feature integration for skeleton detection,” in IJCAI, 2018.

[22] C. Liu, W. Ke, J. Jiao, and Q. Ye, “RSRN: Rich side-output residual
network for medial axis detection,” in ICCV Workshop, 2017, pp. 1739–
1743.

[23] Q. Zeng, Y. Yuan, C. Fu, and Y. Zhao, “People detection in crowded
scenes using hierarchical features,” in IST, 2017, pp. 1–5.

[24] Y. Xu, Y. Bao, J. Chen, W. Zuo, and H. Li, “Surface fatigue crack
identification in steel box girder of bridges by a deep fusion convolutional
neural network based on consumer-grade camera images,” Structural
Health Monitoring, 2018.

[25] J. Canny, “A computational approach to edge detection,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[26] Y. Liu and M. S. Lew, “Learning relaxed deep supervision for better
edge detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp.
231–240.

[27] Y. Wang, X. Zhao, Y. Li, and K. Huang, “Deep crisp boundaries:
From boundaries to higher-level tasks,” arXiv preprint arXiv:1801.02439,
2018.

[28] D. Xu, W. Ouyang, X. Alameda-Pineda, E. Ricci, X. Wang, and N. Sebe,
“Learning deep structured multi-scale features using attention-gated
CRFs for contour prediction,” in Adv. Neural Inform. Process. Syst.,
2017, pp. 3961–3970.

[29] Z. Yu, C. Feng, M.-Y. Liu, and S. Ramalingam, “CASENet: Deep
category-aware semantic edge detection,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2017, pp. 21–26.

[30] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM Int. Conf. Multimedia, 2014, pp. 675–
678.

[31] J. Yang, B. Price, S. Cohen, H. Lee, and M.-H. Yang, “Object contour
detection with a fully convolutional encoder-decoder network,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2016, pp. 193–202.

[32] I. Kokkinos, “Pushing the boundaries of boundary detection using deep
learning,” in Int. Conf. Learn. Represent., 2015.

[33] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urta-
sun, and A. Yuille, “The role of context for object detection and semantic
segmentation in the wild,” in IEEE Conf. Comput. Vis. Pattern Recog.,
2014, pp. 891–898.

[34] S. Hallman and C. C. Fowlkes, “Oriented edge forests for boundary
detection,” in IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 1732–
1740.

[35] G. Bertasius, J. Shi, and L. Torresani, “High-for-low and low-for-
high: Efficient boundary detection from deep object features and its
applications to high-level vision,” in Int. Conf. Comput. Vis., 2015, pp.
504–512.

[36] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation
and support inference from RGBD images,” in Eur. Conf. Comput. Vis.,
2012, pp. 746–760.

[37] S. Gupta, P. Arbelaez, and J. Malik, “Perceptual organization and recog-
nition of indoor scenes from RGB-D images,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2013, pp. 564–571.

[38] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich features
from RGB-D images for object detection and segmentation,” in Eur.
Conf. Comput. Vis., 2014, pp. 345–360.

[39] D. A. Mély, J. Kim, M. McGill, Y. Guo, and T. Serre, “A systematic com-
parison between visual cues for boundary detection,” Vision Research,
vol. 120, pp. 93–107, 2016.

[40] K.-K. Maninis, J. Pont-Tuset, P. Arbeláez, and L. Van Gool, “Convolu-
tional oriented boundaries,” in Eur. Conf. Comput. Vis., 2016, pp. 580–
596.

[41] J. Pont-Tuset and F. Marques, “Supervised evaluation of image segmen-
tation and object proposal techniques,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 38, no. 7, pp. 1465–1478, 2016.

[42] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905, 2000.

[43] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 5, pp. 603–619, 2002.

[44] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” Int. J. Comput. Vis., vol. 59, no. 2, pp. 167–181, 2004.

[45] Z. Ren and G. Shakhnarovich, “Image segmentation by cascaded region
agglomeration,” in IEEE Conf. Comput. Vis. Pattern Recog., 2013, pp.
2011–2018.

[46] Q. Zhao, “Segmenting natural images with the least effort as humans.” in
Brit. Mach. Vis. Conf., 2015, pp. 110.1–110.12.

	1 Introduction
	2 Related Work
	3 Richer Convolutional Features (RCF)
	3.1 Network Architecture
	3.2 Annotator-robust Loss Function
	3.3 Multiscale Hierarchical Edge Detection
	3.4 Comparison With HED

	4 Experiments on Edge Detection
	4.1 BSDS500 Dataset
	4.2 NYUD Dataset
	4.3 Multicue Dataset
	4.4 Network Discussion

	5 Experiments on Image Segmentation
	6 Conclusion
	References

