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Abstract— Class imbalance is a challenging problem in many
classification tasks. It induces biased classification results for
minority classes that contain less training samples than others.
Most existing approaches aim to remedy the imbalanced number
of instances among categories by resampling the majority and
minority classes accordingly. However, the imbalanced level
of difficulty of recognizing different categories is also crucial,
especially for distinguishing samples with many classes. For
example, in the task of clinical skin disease recognition, several
rare diseases have a small number of training samples, but they
are easy to diagnose because of their distinct visual properties.
On the other hand, some common skin diseases, e.g., eczema,
are hard to recognize due to the lack of special symptoms.
To address this problem, we propose a self-paced balance learn-
ing (SPBL) algorithm in this paper. Specifically, we introduce a
comprehensive metric termed the complexity of image category
that is a combination of both sample number and recognition
difficulty. First, the complexity is initialized using the model
of the first pace, where the pace indicates one iteration in the
self-paced learning paradigm. We then assign each class a penalty
weight that is larger for more complex categories and smaller
for easier ones, after which the curriculum is reconstructed by
rearranging the training samples. Consequently, the model can
iteratively learn discriminative representations via balancing the
complexity in each pace. Experimental results on the SD-198 and
SD-260 benchmark data sets demonstrate that the proposed
SPBL algorithm performs favorably against the state-of-the-art
methods. We also demonstrate the effectiveness of the SPBL
algorithm’s generalization capacity on various tasks, such as
indoor scene image recognition and object classification.
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I. INTRODUCTION

HE number of training samples for each skin disease

depends heavily on its incidence [1]-[3]. Actually, there
are more than 1000 kinds of skin diseases, both common and
uncommon, for which it is difficult to either collect or annotate
a balanced data set. Fig. 1 shows the histograms of image
number distributions in two skin disease data sets, i.e., SD-198
(top) [4] and SD-260 (bottom), where the images are captured
by the digital camera or mobile phone, uploaded by patients,
and labeled by doctor volunteers. In Fig. 1, the blue bars
reflect a large gap in the number of samples between com-
mon skin diseases, e.g., solar elastosis (SE), allergic contact
dermatitis (ACD), acne vulgaris (AV), and benign kerato-
sis (BK), and uncommon skin diseases, e.g., vitiligo (VI),
stomatitis (ST), pilomatrixoma (PI), and histiocytosis X (HX).
However, as shown by the red line, the recognition accuracy
of each category is independent of the number of samples,
indicating that the recognition difficulty is also imbalanced for
the disease classes. According to empirical medical knowl-
edge [5], some rare skin diseases, e.g., ST and HX, have
distinct characteristics and are easy to diagnose, while some
common skin diseases, e.g., ACD and BK, are difficult to
recognize due to the lack of special symptoms.

However, most existing works on class imbalance problems
focus only on the imbalanced distribution of sample numbers
among different classes [7]-[9]. Such distribution indicates a
large gap in the training numbers among categories [10]-[13],
where there mainly exists three types of solutions, i.e., the
sampling-based [14]-[16], the cost-sensitive-based [17]-[19],
and the ensemble-based methods [20], [21]. Among them,
the sampling-based ones attempt to balance the number of
samples in the training data set either by oversampling the
minority classes or undersampling the majority ones. However,
this resampling strategy may add redundant noisy data or lose
the informative training samples. In comparison, the cost-
sensitive-based methods usually improve the classification
sensitivity according to class-dependent costs when handling
minority classes. Such costs are calculated by several heuris-
tics based on prior knowledge, such as the imbalanced ratio
of the sample numbers. Different from them, the ensemble-
based methods construct a set of learning branches and then
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Fig. 1. Visualization of the class distribution in the SD-198 [4] (top) and

SD-260 (bottom) data sets. The blue bars denote the number of training
samples (Num) for each class, while the red line denotes the classification
accuracy (Acc) of the raw ResNet50 [6] on the testing set. Each colored box
visualizes a specific skin disease, e.g., SE and ACD. The numbers in the boxes
report the number of samples and the recognition accuracy, respectively.

combine their decisions. Although the ensemble scheme has
advantages over single methods, it relies heavily on the exper-
imental tuning to properly combine the individual classifiers,
which may result in unsatisfactory performance for practical
applications.

In this paper, we address the class imbalance problem via a
combined complexity metric termed the complexity of image
category that synthesizes both the sample number and the
recognition difficulty of classes. We then design a self-paced
balance learning (SPBL) framework inspired by the self-paced
learning (SPL) paradigm [22], [23] to construct a dynamic
program according to the updated complexity. Here, the SPL
simulates the process of teaching a curriculum for students,
which arranges the samples from easy to difficult during
training. It guides the learning procedure to avoid biased
results toward the easily recognized categories (e.g., those with
large class sizes and small intraclass variation).

In addition, we use the iterative SPL scheme to arrange the
learning process using the complexity of image categories.
Specifically, we divide the learning process into K paces.
Given {N; }C1 tramlng samples in C classes, we randomly
select {N;/K }l.:1 of them for each class in the first pace,
while the others are used for evaluation. These Ziczl Ni/K
samples construct the first curriculum to train the initial-
ized model. In the following paces, the mean loss of each
category is calculated by the model derived from the last
pace, which is used to measure the recognition difficulty
of this category. Then, the complexity score of each image
category is calculated based on a tradeoff of both the class
size and the recognition difficulty. During training, a wrong
prediction of any images in complex classes is assigned with
high penalty weights to train a better classifier. Given the
set of complexity scores, we reconstruct a new curriculum
by selecting the samples from the remaining training samples
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accordingly. Finally, we retrain the classifier with the updated
penalty weights and curriculum and also fine-tune the feature
extractor on the current curriculum.

We validate the proposed framework on a clinical skin
disease recognition task with a public data set SD-198 [4]
and a newly collected one called SD-260. As shown in Fig. 1,
the SD-198 data set contains 198 categories of skin diseases,
each of which has 10-60 images. However, according to the
illustration by Sun et al. [4], the class distribution in the real
applications might be more extreme than in this data set since
they only preserve 60 samples for the classes that contain a
large number of images and ignore those consisting of less
than ten images to avoid creating imbalanced class sizes. Con-
sequently, in this paper, we collect an imbalanced skin disease
data set termed SD-260 according to the real distribution of
class sizes reflected by the Deeruest1 website, where the
maximum class contains 2432 images and the minimum one
contains ten samples. Fig. 1 shows the class distribution of
both challenging data sets, which show imbalanced distribu-
tions on both class size and recognition difficulty. We also
extend our method to many alternative imbalanced tasks, such
as indoor scene image recognition and object classification.
Extensive experiments on the evaluated data sets demonstrate
the favorable performance of the proposed SPBL algorithm.

The contributions of this paper are summarized as follows.

1) We propose the complexity of image category that alle-
viates the class imbalance, considering both the class
sizes and the recognition difficulties of each category.

2) We propose the SPBL algorithm to dynamically update
those complexities, followed by attaching penalty
weights and reconstructing a curriculum for discrimi-
native representations.

3) To better evaluate the proposed SPBL method, we col-
lect a new clinical skin disease data set termed
SD-260 that contains 260 classes of skin diseases and
20600 clinical images.

Experimental results on both the SD-198 and SD-260 data
sets and several extended tasks demonstrate that the proposed
SPBL algorithm outperforms the state-of-the-art methods.
We will release all the code, data, and learning models to
the community.

The remaining part of this paper is organized as fol-
lows. In Section II, we briefly review the related works.
In Section III, we illustrate the details of the proposed SPBL
algorithm. The experimental results and analysis are then
provided in Section IV. Section V concludes this paper.

II. RELATED WORK

In this section, we briefly review the literature [24], [25]
of class imbalance, SPL, and clinical skin disease recognition
tasks.

A. Class Imbalance

Deep learning technology recently attracts many
researchers’ attention on the object classification [26]-[28],

1 https://www.dermquest.com/
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detection [29]—-[32], and other fields [24], [33]-[35], yet the
balanced training data are scarce in practical applications.
How to tackle class imbalance is an important issue in
visual recognition tasks. Several excellent surveys concerning
imbalanced learning field are published in the last decade.
He and Garcia [36] propose a systematic review of the
problem fundamental, the detailed solutions, and the major
performance evaluation metrics under the imbalanced learning
scenario. More recently, [37] and [38] analyze the intrinsic
characteristics of the imbalanced data. Branco et al. [39]
then focus on a more general issue of imbalanced predictive
modeling. Overall, the existing solutions of the class
imbalance can mainly be grouped into three categories: the
sampling-, cost-sensitive-, and ensemble-based methods.

1) Sampling-Based Methods: Sampling-based methods
attempt to handle the class imbalance problem at the data level,
i.e., improving the data preprocessing technique. Specifically,
these methods aim to balance the distribution of the original
training set by oversampling the minority classes [40]-[43],
undersampling the majority classes [7], [44], [45], or both.

The oversampling approaches try to duplicate some
instances or create new samples from existing minority classes.
However, this data augmentation process might inherently
produce information redundancy [36], [46]. To address this,
SMOTE [47] is proposed to generate synthetic instances by
linearly interpolating the nearest positive neighbors of minority
class instances.

In contrast, the undersampling approaches attempt to
remove instances from the majority classes before training
the classifier. This sampling strategy, which is often preferred
to oversampling [44], is easy to implement and efficient.
However, it may lose critical information, especially for small
data sets.

2) Cost-Sensitive-Based Methods: Instead of adjusting the
distribution of imbalanced data through various instance
manipulating strategies, the cost-sensitive-based methods
assign suitable cost parameters to penalize the misclassifi-
cation situations at the classifier level [8], [27], [48], [49].
In particular, a heavier penalty factor is applied to the mis-
classification of the minority classes compared to the majority
ones, which improves the sensitivity of classifier. Hence, it is
important to design a cost matrix that reveals the penalty
for misclassified instances from one class to another. For
example, [48] and [49] preset the cost parameters using prior
knowledge although they can dynamically adjust and learn
them during a training phase according to the imbalance
ratio of one class relative to the other classes. In addition,
Zhou and Liu [17] indicate that most research focuses on
class-dependent costs [8], [27], [48], [49]. While there are only
a few investigations on instance-dependent costs [50], [51],
they are more appropriate for real-world applications.

3) Ensemble-Based Methods: Ensemble-based methods
(e.g., MOS-ELM [52]) usually construct a set of learn-
ing algorithms and then combine their decisions. Adapt-
ing either boosting (e.g., AdaCost [53], RealBoost [54], and
LogitBoost [55]) or bagging (e.g., [56]) to use a sam-
pling technique is a popular choice for class imbal-
ance learning [57]. Specifically, [9], [58], and [59] show

that boosting ensembles perform better than the sim-
plest approaches. In addition, [60] and [61] employ bag-
ging to resample neighbor instances from minority classes.
Besides, at the algorithm level, different cost-sensitive-based
boosting algorithms [62], [63] attempt to minimize the num-
ber of the high-cost errors and the total cost for improving
accuracy and reduction in learning time for classification tasks.
Furthermore, Wang et al. [64] propose an ensemble strategy
that combines transfer learning and metalearning to address
the problem of long-tail recognition. Supported by empirical
evaluations, all of them achieve favorable performance com-
pared to using any single method.

B. Self-Paced Learning

SPL is an important technique in the machine learning
community [65], [66]. It simulates the cognitive system of
human, which, at first, learns an initialized and generalized
model structure, followed by increasing the complexity to
accomplish the task of learning comprehensive and technical
knowledge. Among existing methods, the measurement of
complexity scores of each class or sample is at the core of this
problem. In addition, the updating of learning systems from
easy to hard according to such complexities is also important.

Inspired by the regular learning pattern of humans, Ben-
gio et al. [67] formalize a general training strategy termed
curriculum learning (CL). CL aims to address a nonconvex
optimization problem by gradually progressing the training
data with samples from easy to hard. Consequently, the critical
issue in CL is to determine the order of such samples for
the subsequent curriculum. However, it is difficult to define
a clear distinction between easy and hard instances due to
its ambiguous nature, especially for real-world and large-scale
data sets.

To alleviate this problem, Kumar et al. [22] design a novel
SPL paradigm with the same goal as the CL, where the training
instances are presented in a meaningful order to facilitate the
learning procedure. The SPL iteratively updates the impor-
tance parameter of instances, rather than using fixed heuristic
knowledge, and trains a dynamical model. Meng et al. [23]
further provide a theoretical understanding of SPL. Here,
we briefly review the general form of the SPL paradigm.

Given a set of training data {(x1, y1), ..., (x,, y)}, where
x; and y; denote the ith (i € {1,...,n}) observed instance
and the corresponding label, respectively. Let L(y;, g(x;, w))
represent the loss between the estimated label g(x;, w) and
its ground truth label y;. The task of the SPL is to jointly
learn the model parameter w and the latent weight variables

v=1[o1,...,00]7 by minimizing
n
i E A) = i L(yi i i, 4)).
o min E(w,v,7) ;(v, (vi. 8 (xi w)) + £ (i, 2))
1=
(1)
where  f(v;j,A) is called a self-paced regularizer
(SP-regularizer [23]) with a monotonically increasing

pace parameter A. By controlling the loss value and the
pace parameter, the model determines whether to include an
instance into the learning process. Accordingly, the core of
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the SPL is to properly design the SP-regularizers; existing
works include hard [22], linear [68], and mixture [69]
SP-regularizers.

More recently, the theory of SPL has been success-
fully employed in various tasks, such as the multimedia
search [68], matrix factorization [69], self-paced CL [70],
cosaliency detection [71], and face identification [72]. How-
ever, these works rarely involve the issue of class imbalance
that widely exists in real life, especially in the medical imaging
processing. Inspired by SPL, we propose a novel SPBL
mechanism to solve the class imbalance problem. We propose
to learn instances, ordered from easy to hard while balancing
the self-paced curriculum via penalty weight updating (PWU)
and curriculum reconstruction (CR) strategies.

C. Clinical Skin Disease Recognition

A recent report in Nature [73] indicates that performing
clinical skin disease recognition by image analysis is of major
importance since skin disease is one of the most common
diseases appearing in medicine, occurring widely in human life
with significant ill effect. There are some related developments
in this field, such as disease classification [74]-[76], lesion
segmentation [77], detection, and localization [78].

Previous works in skin disease recognition mostly focus
on dermoscopic image processing [73], [76]-[78]. However,
handling directly on clinical skin disease images is more
economical, and getting the digital image from the portable
electronic device (e.g., mobile phone) is more convenient for
patients who can then carry out self-diagnosis. Unfortunately,
there are few open, large-scale standardized data sources [4]
that are needed to develop deep learning technology in this
field. Besides, researchers have to face the challenge that
clinical imaging is easily affected by light intensity, cam-
era angle, uncertain background, and other natural factors
and interferences. Moreover, most current researches address
binary skin disease recognition problems (e.g., melanoma ver-
sus nonmelanoma skin cancer classification), while in practice
clinical skin disease, diagnosis needs to distinguish between
large numbers of categories.

Apart from the above-mentioned issues, the class imbalance
problem is also critical in clinical skin disease recognition
task. Different diseases occur with differing frequencies, which
may inherently cause data sets to have imbalanced training
instances across classes. To the best of our knowledge, there
have been no studies to incorporate SPL to tackle the class
imbalance problem in skin disease recognition. We will intro-
duce the proposed SPBL algorithm in Section III in detail.

III. METHODOLOGY

We introduce the proposed SPBL framework in this section.
First, we present the theoretical analysis and the formulation,
as well as the choice of SP-regularizer [23], which is respon-
sible for controlling the learning procedure and calculating
the latent weight variables. Then, we introduce the definition
and calculation of the complexity level of a class. Finally,
we present two strategies for optimizing the SPBL based on
the class complexity levels. Fig. 2 shows the pipeline of the
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proposed algorithm, in which the cost parameter updating, cur-
riculum reconstructing, CNN model fine-tuning, and classifier
training are the main components of one pace.

A. Self-Paced Balance Learning

In this paper, we present the SPBL method to solve the
class imbalance problem that computes the complexity of
categories based on both the number of samples and the
recognition difficulty of classes. The SPBL extends the SPL
paradigm [see (1)] in two ways: 1) penalizing the classification
errors with larger weights on the more complex categories and
2) reconstructing the curriculum for the following pace that
rebalances the class distribution based on both the number
of samples and the recognition difficulty. The optimization
objective of the SPBL scheme is defined as

min  E(w,v,w, 1, ®%)

w,vel0,1]?

=D @i i L(yi, g(xi, ) + f (i, 2)

i=1

m 1
+ 2 0 (L0 gGjw)) + Slwl2 - (2)
j=n+1

S.I. {(xn+1; Yn+1)» sy (xm, ym)} € q>*

where v = [v1, ..., v,]7 is the set of latent weight variables,
which controls the selection of training instances. In addi-
tion, @ denotes the set of penalty weights that is harder on
the misclassification of samples from more complex classes,
and L(y;, g(x;, w)) computes the loss between predicted
label g(x;, w) and its ground truth label y;. f(v;, A) is the
self-paced regularization term (SP-regularizer [23]) with an
increasing pace parameter 1. ®* denotes the reconstructed
curriculum based on the original self-paced curriculum @
(details can be found in Section III-C). Moreover, n denotes
the total number of training samples, while m denotes the
number of extended samples copied from the last curriculum
for those minority classes.

The SP-regularizer f (v, ) is designed to control the pace of
the learning procedure and to regularize the latent weight vari-
ables. Several SP-regularizers have been constructed, including
hard [22], linear [69], and mixture [68] forms. In this paper,
we use the typical hard SP-regularizer [22] as follows:

fi, 1) = —4v; (3)
of which the closed-form solution v*(4, L) is
1, if L <2
* j,, L — > 4
o ) [O, otherwise. @

Here, the ith instance will be added into the current curriculum
® if we have L < A. During training, we optimize both the
model parameter w and the latent weight variables v in (2) by
alternately optimizing one of them while fixing the other.

B. Complexity Level of Classes

We define the complexity level of a class in this section,
which is a tradeoff between both the class size and the recog-
nition difficulty. We use the loss L(y;, g(x;, w)) to measure
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Fig. 2. Main steps of the proposed SPBL algorithm. It iteratively trains the weighted SVM classifier and updates the self-paced curriculum. The predictions
with top scores form the initial curriculum @. During training, the algorithm calculates the distribution of class complexity level H, which combines both the
class size and the recognition difficulty. Based on that, we use a PWU strategy to calculate the class penalty weights @ and use a CR strategy to sample a
balanced curriculum ® + ®* for training the SVM classifier in the next stage.

the recognition difficulty of x; that is calculated based on the
cross-entropy loss function as follows:

L(yi, (5)

where p(yi|x;) is the probability of correctly classifying the
sample x;.

In the training stage, we divide the learning process into K
paces based on the standard SPL paradigm. In the first pace,
we randomly select & training samples from each category
to construct the first curriculum and train a model. We then
calculate the recognition loss on the remaining (K—Dn samples

K
using this model and select the other %

g(xi, w)) = —log p(yi|x;)

% With the smallest
recognition losses to calculate the similar loss in the next
pace using the newly trained model. Given that, we define the
recognition difficulty lck of a class ¢, in the kth pace, where
ke f{l,...,K}, g € {l ..,C}, and C is the number of
categories. Specifically, we compute the average loss among
the newly selected training samples of each class to denote

recognition difficulty of this class as follows:

Z log p(yjlx;), xjeck ©)

C

o

1
—k
q
where |c§| is the number of newly selected samples from
the remainder of the set of class ¢, in curriculum ®*. Here,
we have 2(5:1 |c§| = |®|*—|®|, where |®|* —|®| denotes the
number of total newly selected samples from the curriculum
® for the new ®*. Note that we calculate the recognition
difficulty based on the newly selected data rather than the
whole set of samples to simultaneously speed up the training
process and precisely evaluate the difficulty with unseen

samples of the model.
We then define the complexity level H ;‘ of the class ¢, in
the kth pace as follows:

exp (lcé)
5]

1

@)

‘q

|ck|H| q| p(y,lx,)

For an arbitrary class, if the recognition difficulty is larger and
the number of instances is smaller, then the complexity H¥ is
larger than others. The set of complexity levels, i.e., {H é‘ }f;’l:],
is used to update the penalty weights of the kth pace, which
is explained in Section III-C1.

C. Alternative Optimization of SPBL

Based on the complexity levels of classes, we alternately
update the penalty weights, reconstruct the curriculum, and
retrain the model.

1) Penalty Weight Updating: We illustrate the calculation
of the penalty weight w in (2) in this section. First, we define
a cost matrix C € R€*C and denote by C;; as the misclas-
sification cost, where the samples of class ¢; are predicted
as c¢j. The cost matrix C satisfies the following conditions:
1)Cii =0;2) 1 <Cj; <a fori # j, where o denotes a
predetermined upper limit of the cost; and 3) there exists at
least one pair of classes, where C;; = 1. We then follow the
definition of [79] to represent the misclassification cost (i) of
class c¢;

C
ci=>cy ®)
j=1
For an arbitrary pair of classes ¢, and c¢p, we have C,; < Cp

if H, < Hp.
We then define the penalty weight w; of class ¢; as follows:

C 1
S

= 1 (€
chzl Cj HL,

w; =C;

C 1 C
where we have > wig- = 2
penalty weights  are normalized by

Hl. Moreover, the set of
1

o @ 10
@ = min(®) (10)

where we have min(@*) = 1 since the easiest class does not
need to be penalized.
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2) Curriculum Reconstruction: The SPL algorithm progres-
sively trains the model using samples from easy to hard.
However, this regime only benefits the imbalanced recognition
difficulty problem yet overlooks the imbalance size among
the classes. To overcome this weakness, the proposed SPBL
rebalances the class distribution of the curriculum ® via a
novel CR strategy

. ¢ I
lcf| = argmin(exp(l’) _ 2. =1 exp( J)) an

. C
il lcil 2= lejl

where |c7| indicates the final number of training samples of
class ¢; in the current pace.

To balance the complexity level among classes, we dynam-
ically assign the number of instances for each class which are
added to the curriculum based on (11). If we have |c}| > |¢;l,
then |cf| — |c;| instances of the class ¢; are added into
the reconstructed curriculum ®* using oversampling strategy.
Specifically, we copy the samples with top |c¢}| — |c;| losses
to oversample this category. Meanwhile, we set the weight
parameter ®; = ;. On the contrary, if |c}| < |c;|, we remove
lc; — ¢} instances of the class ¢; which have the top losses
to undersample this category. We set @ = 0 in this case. The
detailed process of the CR is summarized in Algorithm 1.

Algorithm 1 CR Algorithm
Input: Original curriculum @, penalty weight @
Output: Reconstructed curriculum @*, updated penalty
weight o*
1: Calculate the recognition difficulty of each class via Eq. 6;
2: Calculate the average complexity level among all classes
i Zicewl).
Soileil
3fori={1,---,C} do
4:  Calculate the final number of instances |c]| of the class
¢i in ®* via Eq. 11;

5. if ]| > |ci| then

6: Copy |cf| — |c;| instances of class ¢; with top losses to
o+

7: Set a)l* = w;;

8: else

o: Remove [c;| —|c]| instances of class ¢; with top losses;

10: Set wf = 0;

11:  end if

12: end for

13: return {®*, w*}

3) CNN Model Tuning and SVM Classifier Training: At the
beginning of training SPBL, the curriculum was initialized by
a random set that contains % of the entire training set. We fine-
tune a pretrained CNN model on this set to extract an initial
feature representation for {x;}?_,. After the updating of the
learning pace, the curriculum size is gradually extended, where
the model is fed with more training samples and learns more
potential patterns from them. The feature extraction model,
the classifier, and the curriculum are then alternately updated
in the training procedure.
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To update the classifier, we fix {{x;}i_,, {yi}{_,, v, ®, ®*}
in both the CNN model and the curriculum and update the
parameters w as follows:

n m 1
w* = argminZwiviL,-—}- z w;L;+ —llwl>
wel0,1]n = £ 2
i=l Jj=n+1

St a1y Yna1)s ooy (X, ym)} € ®F

where L; = (y;, g(x;, w)) denotes the loss function. There
are several classification algorithms adapted to our model.
We employ a weight SVM in this paper as the classifier, where
we assign the penalty weight in (10) to each class before
classification.

4) Pace Parameter Updating: The pace parameter 1 con-
trols the number of training instances to be selected in
the SPBL (before reconstruction of the curriculum), and it
monotonically increases during the entire training procedure.
Apparently, more difficult instances are included in the cur-
riculum along with the processing of paces. As a result,
we terminate the updating of the pace parameters when we
get stable evaluation performance. Such termination is required
because a difficult instance always has a larger loss, which may
result in a negative impact on the system performance since the
instance could even belong to noisy data with incorrect labels.
To describe this, we refer to [23] to define a threshold A, on
the losses, where the pace parameter 4, allows a instances to
be added into the curriculum ®*, i.e., there are a instances
with a smaller loss than the pace parameter 4,. Note that in
the early learning paces, most of the instances have a relatively
small loss. Therefore, a small increase of the pace parameter
A will lead to a lot of untrained instances being added to the
curriculum ®.

5) Model Convergence: The entire alternate optimization
process of the SPBL strategy is summarized in Algorithm 2.
After initializing the parameters, the algorithm alternately
updates one module while fixing the others, including the

Algorithm 2 SPBL Algorithm
Input: Training dataset {(x1, y1), -, (X1, Yn)}
Output: Classifier parameter w
1: Initialize the model with a pretrained CNN and classifier
parameters w;
2: Initialize the SP-regularizer f, latent weight variables v
and pace parameter /;
: Predetermine the initial curriculum ®;
: repeat
Update w via Eq. 12;
Update v via Eq. 4, and then get the curriculum ®;
Update the complexity level of each class via Eq. 7;
Update penalty weight parameter @ via Eq. 10;
Update reconstructed curriculum ®* and weight @* via
Algorithm 1;
10:  Tune the CNN model and extract features;
11:  In every T epochs:
12: Augment 4;
13: until Model converge
14: return w

AR A A
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classifier parameters w, the curriculum @, and the set of model
parameters. Thus, the original overall optimization problem of
(2) can be grouped into two suboptimization problems, i.e., the
optimization of both the SPBL and the classifier. Note that at
the beginning of the learning stage, the model is unstable like
other typical SPL algorithms. While the size of the curriculum
is increased along with the learning progresses, the model is
trained with more patterns, which leads to more robust and
discriminative features extracted from the CNN model. Under
the alternating optimization of the parameters, the objective
function can decrease to an optimal value iteratively. Thus,
the SPBL model becomes increasingly stable and finally
achieves convergence.

IV. EXPERIMENTS

In this section, we experimentally demonstrate the effec-
tiveness of the proposed SPBL. First, we introduce two
benchmark data sets, i.e., the SD-198 [4] and the SD-260 data
sets, in which the samples among classes are imbalanced in
terms of both the class size and the difficulty of recognition.
Then, we illustrate the experimental settings, including the
model parameters and various evaluation metrics used for class
imbalance learning. After that, we empirically evaluate and
analyze the proposed SPBL algorithm on the two imbalanced
data sets and, finally, present the experimental results with
comparison to the state-of-the-art methods. We also extend
the proposed SPBL to several other tasks.

A. Data Sets

The imbalanced problem in real-world applications is due to
not only the imbalanced distribution of class sizes but also the
recognition difficulty. Actually, both imbalanced problems are
revealed in the clinical skin disease recognition task. There-
fore, we mainly evaluate the proposed SPBL method on the
SD-198 [4] and SD-260 data sets in this paper. These two data
sets can be downloaded publicly.” We also extend the SPBL
method on several other data sets, including MIT-67 [80],
Caltech-101 [81], MNIST [82], and MLC [83] data sets.

1) SD-198 Data Set: The SD-198 [4] data set focuses on
automatic skin disease recognition and diagnosis problem.
It contains 198 categories of skin diseases and 6584 clinical
images. Images in this data set cover a lot of situations for
patients, such as gender (male and female), age (child, adult,
and old), disease site (head, nails, hand, and feet), color of the
skin (white, black, brown, and yellow), and different periods of
lesions (early, middle, and late). The images contain variations
in color, exposure, illumination, and scale. These images were
collected using digital cameras and mobile phones, uploaded
by patients to the dermatology Dermquest website and anno-
tated by professional dermatologists.

2) SD-260 Data Set: When collecting the SD-198 data set,
the authors manually control the class size distribution by
preserving 10-60 images for each category [4]. As shown
in Fig. 1, the SD-198 has a medium imbalance ratio [84],
where the ratio of the largest category to the smallest one

2http://cv.nankai.edu.cn/projects/sd— 198/

is about 6. This ratio is extremely different in real life, where
common and uncommon skin diseases have substantially dif-
ferent incidences. In this paper, we contribute a new skin
disease data set with a high imbalance ratio (larger than 243),
named the SD-260 data set. We collect the SD-260 from the
same source as the SD-198, yet we only eliminate the class
with less than ten samples and preserve all other classes as
well as all the available images of these diseases. Finally,
it consists of 260 diseases and 20600 images, in which the
maximum class has 2432 samples and the minimum one has
ten. The increase in the category number, the diversity among
classes, and the imbalance degree further leads to a more
challenging data set in the recognition task compared to the
SD-198 data set.

3) Extended Tasks: We also extend our proposed method
to other tasks, such as scene classification (MIT-67 [80]),
object classification (Caltech-101 [81]), handwritten digit clas-
sification (MNIST [82]), and coral classification (MLC [83]).
The MIT-67 [80] data set contains 15620 images. The image
numbers of 67 categories of the indoor scene vary between 101
and 738. The Caltech-101 [81] data set contains 9144 images
belonging to 102 categories (101 objects + background). The
image number for each category varies between 31 and 800.
The MNIST [82] data set consists of 70000 images and ten
categories of digits. Each category contains 7000 images. The
MLC [83] data set consists of 2055 images that are divided
into three sets according to collection time (2008-10). Each
image has roughly 200 point annotations belonging to nine
categories. The labeled points for each category approximately
vary between 2622 and 196910.

B. Experimental Settings

1) Training/Testing Set Partition: We divide both the
SD-198 and SD-260 data sets by randomly splitting each cat-
egory into training and testing sets with 8 : 2 samples. Specif-
ically, we select 5268 images for training and the remaining
1316 images for testing in SD-198 and 16480 images versus
4120 images in SD-260. Note that the proportion between
two different classes in the testing set is the same as in the
training set, as shown in Fig. 1. We follow the training/test
split protocols from [27] in the extended tasks. We use the
6 : 4 training/test split for the MIT-67 and Caltech-101 data
sets and the 6 : 1 for the MNIST data set. In addition, for
the MIT-67, Caltech-101, and MNIST data sets, we reduce
the image number of odd classes to 10% in training set to
unbalance training distribution. As for the MLC data set,
we train on the data of the year 2008 and test on the data
of the year 2009.

2) Network Parameters and Implementation Details:
We use the raw ResNet-50 [6] that is pretrained on
ImageNet [85] as the backbone of the CNN architecture.
We then fine-tune the network on the SD-198 and the SD-260
data sets, respectively. The learning rate is initialized to be 0.01
and decays by 0.1 in every 40 epochs. We use the stochastic
gradient descent (SGD) with momentum as the optimizer. The
minibatch size is set to be 64 and the momentum equals to 0.9.
The weight decay parameter in the £>-regularization term is set
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to be 0.0005. The input RGB image size is fixed to a square of
224 %224 x 3 pixels. We implement the SPBL method using the
open framework PyTorch and run it on an Intel Core 17-4790K
CPU @ 4.00 GHz, 32-GB RAM, and an NVIDIA GeForce
GTX TITAN X GPU with 12-GB video RAM. The code and
pretrained models are available online.?

3) Evaluation Metrics: To avoid a compromise evaluation
of misclassification among the minority and majority classes
in class imbalance problem, we comprehensively measure the
performance of the classifier on both the precision and the
recall using the following metrics: F-measure, G-mean [86],
and Mauc [87]. Assume that n;; is the number of samples in
the class ¢;, which are classified as class ¢;. Then, the preci-
sion P; and the recall R; of class ¢; can be defined as

nij
C
=i nji

where C is the number of classes. The average precision and
recall can be defined as

nij
C
j=1"1ij

P; = and R, = (12)

c c
.. 1 1
Precision = c E P; and Recall = C E Ri. (13)

i=1 i=1

Neither of them can effectively represent the performance
of classifier independently. The F — measure combines the
precision and the recall as a tradeoff with the choice that the
factor f = 1.0 (F1) indicates that recall and precision are
equally important

C 2
1 (1 IB )1 i Ri
F- = — E - - .
measure C

(14)
& BPi+R;

The G-mean evaluates the average sensitivity of all classes
and especially reflects the degree of bias in minority classes,
which is defined as

1

C c
G-mean = (H R,-) .

i=1

5)

As for the area under the curve (AUC) metric in the
classification problem, we follow the microaverage scheme
Mauc of the definition as in [7]. Similar to the form of
F-measure and G-mean, it integrates the weighted average
of all labels

2Mp Mg

—_— (16)
Mp + Mr

Mauc =

where the microaverage precision Mp and the recall MR are
defined as

>y i
C C :
s Zj:l nij

>
- < C C
s Zj:l nji

Mp and Mg =
a7

3https://github.com/xpwu95/SPBL_Pytorch
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Fig. 3.  Classification performance of the proposed SPBL method with a
different total number of paces (K). Here, “value” indicates the results of F'1,
G-mean, Mayc, and Acc (accuracy) on the SD-198 data set. Accordingly,
we set K =5 in the rest of the experiments, i.e., we conduct five paces for
each experiment.

C. Parameters

In this section, we discuss the setting of parameters of
the proposed SPBL algorithm. We experimentally analyze the
selection of the number of paces K and the pace parame-
ter A. In the SPBL algorithm, we keep the step size of &
instances to expand the curriculum capacity in each paced
learning procedure, where n denotes the number of instances
in the total training set. We evaluate the SPBL performance
under different settings of K from 1 to 7 under different
performance metrics. As illustrated in Fig. 3, with the increase
of K, the model will perform better within a certain interval.
After comprehensively considering the tradeoff between model
complexity and performance, we set the total iteration number
K =5, and we monotonically augment the pace value to /1,-%
at the ith pace of SPBL. "

D. Ablation Study

We conduct a set of ablation experiments in this section
to validate the effectiveness of each module of the proposed
SPBL algorithm. Specifically, we evaluate the baseline of the
SPL and two extended components, including PWU and CR
strategies. We employ the ResNet-50 [6] as the deep feature
extractor and the SVM as the classifier. Table I reports the
experimental results.

1) Introducing SPL: We first evaluate the performance of
SPL [22], [23] that is introduced to address the class imbal-
ance problem. As shown in Table I, the experimental results of
SPL (second row of each data set) on both imbalanced data
sets demonstrate an improvement compared to the baseline
method (using deep features to train SVM directly without any
other processing, the first row of each data set). Note that when
comparing the value of Fl-measure, the SPL method leads to
a big improvement of about 7%, which is mainly due to the
incremental knowledge from hard instances and the effective
learning process from easy to hard. The performance on the
G-mean metric also shows a substantial increase of the SPL
against the baseline method although both methods perform
unsatisfactorily. However, there still exists a considerable gap
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TABLE I

ABLATION EXPERIMENTS ON BOTH THE SD-198 AND SD-260 DATA SETS
VERIFYING THE EFFECTIVENESS OF DIFFERENT MODULES OF THE
PROPOSED METHOD. EACH ENTRY IN THIS TABLE IS COMPOSED
OF THE MEAN AND THE VARIANCE OF THE CORRESPONDING
PERFORMANCE DERIVED BY CROSS VALIDATION

Dataset Method F1 G-mean Mauc Acc
SVM 50.8+2.5 16.74+3.1 584423 58.74£2.2
SPL 57.842.6 27.5+1.7 63.14£29 62.243.1
SPL+NPWU 61.1+1.9 345429 642420 63.6+1.9

SD-198 SPL+DPWU 58.34+2.7 31.74£3.3 63.54+24 62.9+2.1
SPL+PWU  63.742.2 40.24+2.6 66.4£2.1 65.942.0
SPL+CR 63.4+2.0 399427 65.8+2.0 65.1£1.9
SPBL 66.2+1.6 42.844.0 68.5+1.6 67.8£1.8
SVM 33.6+1.0 42403 59.2+0.6 60.9+5.8
SPL 39.4+0.7 9.840.8 61.0+£0.8 61.1£1.0
SPL+NPWU 45.04+0.9 13.3+1.3 61.9£09 62.240.9

SD-260 SPL+DPWU 42.14£0.8 11.9+1.5 61.7£0.9 62.04+0.8
SPL+PWU 482+4+1.0 15.5+1.3 63.0£0.8 63.64+0.8
SPL+CR 484409 159+1.1 62.7£0.8 63.34+0.7
SPBL 51.0+0.9 19.6+1.1 64.8+1.2 65.1+0.8

between the G-mean and the accuracy. This reflects the fact
that although SPL improves model performance over baseline,
it still learns an insufficient representation and, thus, fails
to handle the class imbalance adequately. For example, SPL
cannot properly address the imbalanced situation, in which one
class not only has a few instances but is hard to learn.

2) Joint SPL and PWU Strategy: We then evaluate the
effectiveness of the PWU module in the SPBL architecture.
As shown in Table I, adding the PWU module by setting the
penalty parameter of the error term produces an improved
accuracy of 3.7% on the SD-198 data set. This is mainly
because the PWU intentionally biases the learning among
classes with higher complexity level, which forces the clas-
sifier to pay more attention to the more complex classes.
Furthermore, in the PWU strategy, we alternatively replace the
measurement of complexity level with the number of samples
in class (NPWU) and recognition difficulty (DPWU), which
reflects the individual effect of both class size and recognition
difficulty. As shown in Table I, the PWU strategy outperforms
both alternatives under all evaluation metrics, which confirms
the effectiveness of combining both the class size and the
recognition difficulty to measure the complexity level.

3) Joint SPL and Curriculum Reconstruction: We also
explore the benefit of the CR scheme on the data level.
For a fair comparison, we fix the penalty weight of each
class to be 1 in this experiment. As shown in Table I,
the model with SPL and CR (SPL + CR) achieves similar
performance as the model with PWU, both of them show
a large improvement against the raw SPL method. The CR
strategy rebalances the class distribution of the curriculum
from each SPL procedure by oversampling classes with a
higher loss but fewer instances and undersampling classes with
the lower loss but more instances. This fits the learning pattern
of humans, e.g., sometimes when we meet knowledge that

Acc

——SD-198
SD-260

3-rd 4-th

2-nd
k

5-th

Fig. 4. Iterative performance along with paces when training the proposed
SPBL algorithm on both the SD-198 (purple line) and SD-260 (brown line)
data sets. Here, K indicates the total number of paces and k refers to one step.
Note that the classification accuracy is increased along with the increasing
paces, while the result of the last pace outperforms the baseline method
without the SPL strategy.

is hard to learn, we need some easier cases to learn before.
By emphasizing the importance of complex instances and
weakening the redundant easy ones, the model incrementally
learns and considers both the class size and difficulty from a
balanced self-paced curriculum.

4) Proposed SPBL: Finally, we integrate both the PWU and
the CR strategies and propose the SPBL method. Specifically,
we first measure the class complexity level based on the origi-
nal curriculum, and then, we use the complexity information to
design the penalty weights and reconstruct the curriculum for
each class. After that, we retrain the SVM classifier with the
updated curriculum and weights. As shown in Fig. 4, the model
achieves better performance in each step when using the SPL
procedure. Table I also demonstrate that the combination of
PWU and CR strategies, i.e., the SPBL method, outperforms
others under all metrics.

E. Comparison With the State-of-the-Art Methods

In this section, we compare our SPBL approach against the
state-of-the-art methods on the SD-198 and SD-260 data sets
and several other tasks.

1) Comparative Methods: All compared methods can be
grouped into the four series as follows.

1) Sampling-Based Methods: The sampling-based methods
usually change the distribution of class sizes using
resampling  techniques, including undersampling
(e.g., random undersampling (RUS), instance hardness
threshold (IHT) [89], and NearMiss-2 [88]) and over-
sampling methods (e.g., ADASYN [14], SMOTE [47],
and Borderline-SMOTE (B-SMOTE) [90]). Among
them, the RUS randomly removes samples to get a
balanced class distribution. The IHT filters the data
sets through a priori instance hardness information and
integrates this knowledge into the training process to
alleviate the effects of class overlap. The NearMiss-2
chooses negative training samples by applying the
k-nearest neighbor (NN) approach. The ADASYN
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TABLE II

COMPARISON TO THE STATE-OF-THE-ART IMBALANCED LEARNING METHODS ON BOTH THE SD-198 AND SD-260 DATA SETS
UNDER DIFFERENT EVALUATION METRICS. EACH ENTRY IN THIS TABLE IS COMPOSED OF THE MEAN AND THE
VARIANCE OF THE CORRESPONDING PERFORMANCE DERIVED BY CROSS VALIDATION

Methods SD-198 SD-260
Precision  Recall F1 G-mean Mauc Acc Precision  Recall F1 G-mean Mauc Acc
RUS 58.14£1.6 55.6+1.5 53.1+1.0 31.2+1.1 57.3+14 54.6£14 36.7£1.2 42.0+£1.1 352409 152419 494413 453+1.0
NearMiss-2 [88] 58.0+14 5744+1.8 54.8+414 34.14£3.6 58.3+£1.5 57.0£1.6 309+1.3 422414 31.4%1.1 15.7+1.9 43.6£1.5 36.3+1.8
IHT [89] 55.94+1.5 49.54+2.1 47.5+19 18.8+2.7 54.1+£1.9 49.7£1.8 39.3£0.5 36.6+0.7 32.04+0.5 8.84+0.4 47.8+1.1 43.4+1.2
ADASYN [14] 64.4+1.7 63.44+19 61.7£1.6 41.0£2.8 649+1.8 64.1£1.8 55.64+0.8 47.9+0.1 49.440.3 18.54+0.5 63.8+04 64.31+0.3
SMOTE [47] 643+1.0 63.0+12 61.4+1.1 40.8+1.8 64.3+1.1 63.4+£1.1 555£1.3 47.54£09 49.1+09 184+1.1 63.7+£04 64.240.2
B-SMOTE [90] 63.1+£0.8 60.9+1.6 59.7+1.3 39.3+2.5 63.1£1.7 62.2+1.8 55.6+£1.1 47.1£0.8 489408 17.7+1.2 63.4+04 64.1+0.2
Rescalepeqw [17] 59.743.6 55.1+4.2 54.3+4.0 244454 60.1£3.0 59.3£3.1 46.1+£3.1 37.34+3.0 38.84+3.1 7.2+19 60.4+£1.3 61.6£0.9
CSNN [48] 583422 52.0424 52.342.6 19.1£3.6 59.4+2.2 59.4+£2.1 43.4£09 31.5+1.1 34.1£1.0 43402 59.5+0.6 61.240.6
ENN [91] 64.742.0 59.04+2.1 59.3+2.1 34.5+5.3 63.0£2.0 61.3£1.9 52.6£1.7 469414 459414 219413 60.24+0.6 55.2+1.6
SMOTEBoost [92]  61.5+£2.1 58.7+£4.7 57.2+£3.5 32.74+7.6 61.843.0 60.7+2.7 41.8+1.8 39.3+1.0 38.4+1.2 7.9+04 582405 60.240.5
RUSBoost [93] 56.3£1.7 53.14+£1.9 523+1.8 19.1£1.3 593+2.0 59.5£2.0 39.84+1.2 38.3+0.7 36.7£0.8 7.5+0.5 57.7£0.6 57.840.5
SVM 56.6+2.0 50.842.4 50.8+2.5 16.7£3.1 58.4+£23 58.7£2.2 42.6%+1.3 31.0+09 33.6+1.0 42403 59.2+0.6 60.9£5.8
SPBL 714+1.7 65.7£1.6 66.2+t1.6 42.8+4.0 68.5+1.6 67.8+1.8 59.9+1.6 48.2+1.1 51.0+0.9 19.6+1.1 64.8+£1.2 65.1+£0.8
TABLE III

COMPARISON RESULTS OF CLINICAL SKIN DISEASE DIAGNOSIS ON THE SD-198 DATA SET. SIFT AND CN (COLOR NAME) ARE EXTRACTED BY USING
THE CODE OF [94]. ”-ft” MEANS FINE-TUNING THE VGGNET ON SD-198. TS-L IS THE TEXTURE SYMMETRY OF LESION; CN-L IS THE COLOR
NAME OF LESION; AC-L IS THE ADAPTIVE COMPACTNESS OF LESION; “GENERAL-D” IS THE RECOGNITION ACCURACY OF THE GENERAL
DocTorR WHO DOES NOT FOCUS ON ONE SPECIFIC KIND OF DISEASE; “JUNIOR-D” IS THE RECOGNITION ACCURACY OF JUNIOR
DERMATOLOGIST; AND C-INT IS THE INTERGENERATION OF THREE KINDS OF REPRESENTATIONS: TS-L, CN-L, AND AC-L

Method SIFT CN Vegg [4] Vgg-ft [4] TS-L CN-L AC-L [74] G-Doctor  J-Doctor  C-Int [74] Ours
etho [94] [94] [74] [74] [74] [74]
Acc | 321449 253442 395423 569416  52.043.6  43.1+3.1 424440 49.0 52.0 594421  67.8+1.8

generates the synthetic data for minority class samples
according to their difficulty level in learning. The
SMOTE operates in the feature space and creates syn-
thetic minority class instances by combining the sample
under the observation with its NN. The textbfB-SMOTE,
unlike the SMOTE, only oversamples the minority
instances near a decision boundary.
Cost-Sensitive-Based Methods: This kind of method
penalizes the misclassification among classes via
the cost factor of the classifier. The Rescalepew [17]
addresses the cost-sensitive learning by rescaling the
classes using the cost information. The CSNN [48]
trains cost-sensitive neural networks with a set of algo-
rithms, in which threshold-moving is the best one and we
compared against it in this paper. The ENN [91] extends
the NN method to learn an unequal distribution, con-
sidering the relative NN relationships between samples.
Ensemble-Based Methods: These methods usually
employ several learning algorithms and combine their
decisions. The SMOTEBoost [92] indirectly changes
the updating weights of misclassified instances based
on the combination of SMOTE and boosting learning.
The RUSBoost [93] is another algorithm that combines
boosting and data sampling but is simpler and faster
than the SMOTEBoost.

2)

3)

4) We also compare against two state-of-the-art methods,
i.e., [4] and [74], which are the typical solutions to
address the class imbalance on clinical skin disease
recognition problems. Tables II and III show the
comparisons of clinical skin disease recognition
performance under six metrics, including precision,
recall, F1, G-mean, Mayc, and accuracy. Note that
the performance of comparative methods is not good
on both data sets if we simply adopt the default
hyperparameters given in the original paper. In this
paper, we tune the parameters of these methods and
report the best result we got.

The comparison results against the state-of-the-art methods
on the two data sets are reported in both Tables II and III.
The results from different strategies are grouped into different
blocks of rows. For a fair comparison, we employ the same
deep features derived from the same raw ResNet-50 model at
the beginning step for all comparative methods and use the
one-versus-rest scheme SVM with same parameter settings as
the estimator.

Apparently, the original deep features combined with the
SVM estimator have poor performance, as shown in the second
last row of Table II. The results on the G-mean metric is
especially worse than most compared methods. The G-mean
calculates the geometric mean of the accuracies of every class,
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which means that the poor accuracy of even one class will lead
to a poor G-mean value. Hence, the result indicates that several
classes are entirely unrecognized by the classifier, meaning
there exists a massive imbalanced problem on both data sets.

2) Comparison to Sampling-Based Methods: As shown
in Table II, the SPBL outperforms the undersampling-based
methods on the SD-198 data set with more discriminative
representations and classifiers. However, the undersampling
methods, e.g., NearMiss-2 and IHT, ensure that each class
retains an approximate number of instances compared to the
minority class, which may also cause the issue of few-shot
learning. Moreover, the RUS performs better than IHT accord-
ing to most metrics since the last method loses some useful
information after removing instances. This weakness espe-
cially appears in the nonbinary classification task with data
sets that have a great disparity in the sizes of the majority
and minority classes. In contrast, the SPBL dynamically
removes instances with relatively simple information in each
self-paced curriculum, which demonstrated a positive effect on
the classifier.

The SPBL also outperforms the oversampling methods on
all evaluation metrics. This is because the SPBL focuses not
only on the smaller classes but on the classes that are hard to
classify no matter how many instances they have during train-
ing. In contrast, the sampling-based methods cannot process
the imbalance of some classes since they only focus on the
number of class, e.g., that have a large number of instances and
a high recognition difficulty. The experiments on the SD-260
data set show similar results.

3) Comparison to Cost-Sensitive-Based Methods: We can
observe from Table II that the SPBL also outperforms most
of the cost-sensitive-based methods.

The CSNN method does not perform well, which only gets
little improvement over the baseline. Its poor performance is
also reflected in the G-mean value. The CSNN performs well
on the binary classification task, while faces more difficulty on
the multiclass [48]. This shows that the cost-sensitive learning
is difficult with the increase in the number of classes in
nonbinary classification imbalance problems.

The ENN method performs the best, except for the SPBL
under the metrics “Precision,” “Recall,” “G-mean,” and “F1,”
as shown in Table II. It even outperforms the SPBL in the
G-mean metric by 2% on the SD-260 data set, yet it achieves
9.9% lower performance of classification accuracy than our
method. It efficiently measures the relative NN relationships
among instances. This result indicates that it is important to
define the relationships between instances or classes when
designing the cost matrices, and it is not enough to only
measure the class size in imbalance learning.

4) Comparison to  Ensemble-Based  Methods: The
SMOTEBoost and RUSBoost methods aim to improve the
classification accuracy by integrating the decisions of several
classifiers. For fair comparisons, we use the one-versus-rest
SVMs with the same parameter settings as their base classifiers
for these two comparison methods.

The ensemble-based methods we choose to compare per-
form similarly as the CSNN method, i.e., outperforming
the baseline method in most of the evaluation metrics but
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showing distinctly poor performance in the G-mean value.
The RUSBoost method and the boosting learning procedure
show the positive effect in classification accuracy compared
to the base RUS method but perform poorly, especially in
terms of G-mean on the level of the imbalance problem. The
SMOTEBoost even performs poorly compared to the base
SMOTE method on all evaluation metrics although it slightly
outperforms the baseline and the RUSBoost methods. The per-
formance of SPBL demonstrates that the proposed method is
capable of achieving good performance with a single classifier.

5) Comparison to Skin Disease Diagnosis Methods:
We also compare the SPBL method with the state-of-the-
art computer-aided diagnosis (CAD) methods in a clini-
cal skin disease recognition task. The method proposed by
Sun et al. [4] provided the SD-198 benchmark data set and
applied several state-of-the-art methods to it. For a fair com-
parison, we use the combination of the deep CNN features plus
the SVM classifier as the method of this paper to compare
against, and it is noticeable that the results of this method
exceed any results reported in [4]. The method proposed by
Yang et al. [74] designed six medical representations consid-
ering different criteria for their diagnosis system. For the dif-
ferent experimental environment, i.e., different training/testing
split, we perform the five cross-validation experiment and
report the average accuracy and standard deviation in Table III.

Both of the comparative methods, especially the method
proposed by Yang et al. [74], achieve comparable results with
the dermatologists. However, there is a considerable number of
methods in Table II, including the SPBL, which outperforms
them. When compared with [4] and [74] in terms of classifi-
cation accuracy, the SPBL produces significant improvements
of 10.9% and 8.4%, respectively, on the SD-198 data set. The
experimental results demonstrate the effectiveness of the SPBL
and the validity of solving this real-world application with the
imbalanced learning consideration.

6) Further Analysis: Fig. 5 shows the accuracy gains for
each class of SPBL over the contrast methods, i.e., SMOTE,
CSNN, ENN, and SMOTEBoost, on the SD-198 data set.
Our SPBL method solves the class imbalance issue based
on both the size and the recognition difficulty of each class.
We show the improvement in two ways, i.e., reordering the
classes by class size and recognition difficulty, respectively,
calculated by (6).

We can see that SPBL performs well on the classes
with fewer instances and lower difficulty. Moreover,
the SPBL shows a relatively balanced gain over competitors,
i.e., it improves the classification performance on classes no
matter whether it is large or small and is hard or easy.
Traditional imbalanced learning methods mainly focus on the
minority classes with a smaller size or a higher complexity
level. The proposed SPBL method considers all classes and
aims to learn a balanced representation, as the results illus-
trated in Fig. 6, which outperforms the compared methods.

Fig. 7 visualizes several categories of clinical skin diseases
and the change of recognition accuracies at different paces.
Fig. 7(a)-(c) shows that the SPBL performs well on both the
categories with big or small sizes (such as “AKV,” “MM,”
“Telangiectasia” (TE), “lichen simplex chronicus” (LSC),
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(b) Class ID ranked by recognition difficuty

Fig. 5. Accuracy gains of SPBL over the comparative methods on the SD-198 data set. (a) Class IDs are ranked by the instance number of categories from
large to small, which are drawn by the red line. (b) Class IDs are ranked by the recognition difficulty [calculated by (6)] of categories from easy to difficult,
which are drawn by the red line. For both (a) and (b), Y-axis (left) indicates the accuracy gains of SPBL against the other four methods. Y-axis of (a, top
right) refers to instance number of each class. Y-axis of (b, bottom right) is the recognition difficulty of each class.

(a) (b)

Fig. 6. Visualizations of 2D t-SNE [98] feature embedding on (a) and (b) SD-

(©) (d)

198 and (c) and (d) SD-260 data sets. (a) and (c) Feature embedding using

the features extracted from the raw ResNet50, i.e., trained using all samples without the consideration of class imbalance and the SPL paradigm, on the
SD-198 and SD-260 data sets, respectively. (b) and (d) Feature embedding by using the features derived from the model of SPBL trained on SD-198 and
SD-260 data sets, respectively. Note that the models in all figures are trained with the same number of epochs.

TABLE IV

COMPARISON WITH THE STATE-OF-THE-ART IMBALANCED LEARNING METHODS ON THE TASKS OF SCENE CLASSIFICATION (MIT-67 [80]), OBJECT
CLASSIFICATION (CALTECH-101 [81]), HANDWRITTEN DIGIT CLASSIFICATION (MNIST [82]), AND CORAL CLASSIFICATION (MLC [83]).
WE RANDOMLY SET 50 SAMPLING LISTS OF THE FIRST THREE DATA SETS, RESPECTIVELY, AND REPORT THE MEAN
PERFORMANCE SINCE WE CANNOT GET THE LIST IN THE ORIGINAL PAPER, EXCEPT FOR THE MLC

Dataset SMOTE RUS [88] SMOTE- WSVM [96] WREF [97] SOSR CoSen Rescalepew Ours
[47] RSB* [95] CNN [26] CNN [27] [17]

MIT-67 339 28.4 34.0 355 352 49.8 56.9 35.1£1.2 64.1£0.5

Caltech-101 67.7 61.4 68.2 70.1 68.7 714 83.2 58.14+0.7 88.61+0.4

MNIST 94.5 92.1 96.0 96.8 96.3 97.8 98.6 98.1£0.3 99.0+0.1

MLC 389 31.4 43.0 47.7 46.5 65.7 68.6 63.7 72.0

“hailey-hailey disease” (HHD), and “SE.” The SPBL grad-
vally learns the data from easy to hard, which can recognize
the skin lesion that has a great change at the different stage
of illness (e.g., early and late stages). For example, the HHD

in Fig. 7(c) has significantly different symptoms within-class
in terms of border, color, and lesion location at different
stages, which can be gradually recognized by the proposed
SPBL with only six training instances. As for the negative
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Fig. 7. Illustrations of classification results and the change of the recognition
accuracy. (a)—(d) Positive examples (blue box) and negative examples (red
box) of SPBL. For each subpicture, the images with the green edge are
correctly classified and the others are misclassified (purple edge). Each
abbreviation above the image denotes the category of skin disease, e.g., acro-
keratosis verruciformis (AKV) and melasma (MM). The numbers below the
abbreviations are the training instances number of the category. The red line
denotes the change of classification accuracies of the Ist and 5th paces.

example of the results “aphthous ulcer” (AU) and “perioral
dermatitis” (PD) of Fig. 7(d), the recognition accuracies are
not further improved during SPBL’s learning because the diag-
nosis of these diseases usually requires a biopsy. For example,
distinguishing between AU and ‘“hand-foot-mouth disease”
often needs the liquid from the vesicula to be assayed, and
the two skin diseases have very similar clinical manifestations.
We also evaluate the proposed method on several other tasks,
as shown in Table IV, that also demonstrate the favorable
performance of the SPBL against the comparative methods.

V. CONCLUSION

In this paper, we address the class imbalance issue and
propose a novel SPBL algorithm that is trained using samples
from easy to hard. We also propose a novel insight that in
real-world applications, the class imbalance problem is not
only due to the imbalanced distribution of class sizes but
also the imbalanced recognition difficulty. Inspired by that,
we propose both the PWU and CR strategies that ensure that
the model learns a comprehensively balanced representation
in each SPL procedure. We conduct experiments on two
imbalanced data sets about clinical skin disease recognition
tasks and several other imbalanced problems. The results
indicate that both components of the proposed algorithm are
effective and demonstrate the advantage of the SPBL against
the state-of-the-art methods.
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