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Architecture
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Abstract—Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone
convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to consistent perfor-
mance gains on a wide range of applications. However, most existing methods represent the multi-scale features in a layer-wise manner.
In this paper, we propose a novel building block for CNNs, namely Res2Net, by constructing hierarchical residual-like connections within
one single residual block. The Res2Net represents multi-scale features at a granular level and increases the range of receptive fields
for each network layer. The proposed Res2Net block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet,
ResNeXt, and DLA. We evaluate the Res2Net block on all these models and demonstrate consistent performance gains over baseline
models on widely-used datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative
computer vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority of the
Res2Net over the state-of-the-art baseline methods. The source code and trained models are available on https://mmcheng.net/res2net/.

Index Terms—Multi-scale, deep learning.
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1 INTRODUCTION

V ISUAL patterns occur at multi-scales in natural scenes as
shown in Fig. 1. First, objects may appear with different

sizes in a single image, e.g., the sofa and cup are of different
sizes. Second, the essential contextual information of an object
may occupy a much larger area than the object itself. For instance,
we need to rely on the big table as context to better tell whether
the small black blob placed on it is a cup or a pen holder.
Third, perceiving information from different scales is essential
for understanding parts as well as objects for tasks such as fine-
grained classification and semantic segmentation. Thus, it is of
critical importance to design good features for multi-scale stimuli
for visual cognition tasks, including image classification [28],
object detection [43], attention prediction [45], target tracking
[63], action recognition [46], semantic segmentation [6], salient
object detection [2], [24], object proposal [12], [43], skeleton
extraction [67], stereo matching [42], and edge detection [37],
[57].

Unsurprisingly, multi-scale features have been widely used
in both conventional feature design [1], [39] and deep learning
[10], [51]. Obtaining multi-scale representations in vision tasks
requires feature extractors to use a large range of receptive fields
to describe objects/parts/context at different scales. Convolutional
neural networks (CNNs) naturally learn coarse-to-fine multi-scale
features through a stack of convolutional operators. Such inherent
multi-scale feature extraction ability of CNNs leads to effective
representations for solving numerous vision tasks. How to design a
more efficient network architecture is the key to further improving
the performance of CNNs.

In the past few years, several backbone networks, e.g., [10],
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Fig. 1: Multi-scale representations are essential for various vi-
sion tasks, such as perceiving boundaries, regions, and semantic
categories of the target objects. Even for the simplest recognition
tasks, perceiving information from very different scales is essential
to understand parts, objects (e.g., sofa, table, and cup in this
example), and their surrounding context (e.g., ‘on the table’
context contributes to recognizing the black blob).

[15], [23], [25], [26], [28], [47], [51], [56], [60], have made
significant advances in numerous vision tasks with state-of-the-
art performance. Earlier architectures such as AlexNet [28] and
VGGNet [47] stack convolutional operators, making the data-
driven learning of multi-scale features feasible. The efficiency
of multi-scale ability was subsequently improved by using conv
layers with different kernel size (e.g., InceptionNets [50], [51],
[52]), residual modules (e.g., ResNet [23]), shortcut connec-
tions (e.g., DenseNet [26]), and hierarchical layer aggregation
(e.g., DLA [60]). The advances in backbone CNN architectures
have demonstrated a trend towards more effective and efficient
multi-scale representations.

In this work, we propose a simple yet efficient multi-scale
processing approach. Unlike most existing methods that enhance

https://mmcheng.net/res2net/
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Fig. 2: Comparison between the bottleneck block and the proposed
Res2Net module (the scale dimension s = 4).

the layer-wise multi-scale representation strength of CNNs, we
improve the multi-scale representation ability at a more granular
level. Different from some concurrent works [5], [9], [11] that
improve the multi-scale ability by utilizing features with different
resolutions, the multi-scale of our proposed method refers to the
multiple available receptive fields at a more granular level. To
achieve this goal, we replace the 3 × 3 filters1 of n channels,
with a set of smaller filter groups, each with w channels (without
loss of generality we use n = s × w). As shown in Fig. 2, these
smaller filter groups are connected in a hierarchical residual-like
style to increase the number of scales that the output features can
represent. Specifically, we divide input feature maps into several
groups. A group of filters first extracts features from a group of
input feature maps. Output features of the previous group are then
sent to the next group of filters along with another group of input
feature maps. This process repeats several times until all input
feature maps are processed. Finally, feature maps from all groups
are concatenated and sent to another group of 1× 1 filters to fuse
information altogether. Along with any possible path in which
input features are transformed to output features, the equivalent
receptive field increases whenever it passes a 3×3 filter, resulting
in many equivalent feature scales due to combination effects.

The Res2Net strategy exposes a new dimension, namely scale
(the number of feature groups in the Res2Net block), as an
essential factor in addition to existing dimensions of depth [47],
width2, and cardinality [56]. We state in Sec. 4.4 that increasing
scale is more effective than increasing other dimensions.

Note that the proposed approach exploits the multi-scale po-
tential at a more granular level, which is orthogonal to existing
methods that utilize layer-wise operations. Thus, the proposed
building block, namely Res2Net module, can be easily plugged
into many existing CNN architectures. Extensive experimental re-
sults show that the Res2Net module can further improve the perfor-
mance of state-of-the-art CNNs, e.g., ResNet [23], ResNeXt [56],
and DLA [60].

1. Convolutional operators and filters are used interchangeably.
2. Width refers to the number of channels in a layer as in [61].

2 RELATED WORK

2.1 Backbone Networks
Recent years have witnessed numerous backbone networks [15],
[23], [26], [28], [47], [51], [56], [60], achieving state-of-the-
art performance in various vision tasks with stronger multi-scale
representations. As designed, CNNs are equipped with basic
multi-scale feature representation ability since the input infor-
mation follows a fine-to-coarse fashion. The AlexNet [28] stacks
filters sequentially and achieves significant performance gain over
traditional methods for visual recognition. However, due to the
limited network depth and kernel size of filters, the AlexNet has
only a relatively small receptive field. The VGGNet [47] increases
the network depth and uses filters with smaller kernel size. A
deeper structure can expand the receptive fields, which is useful
for extracting features from a larger scale. It is more efficient
to enlarge the receptive field by stacking more layers than using
large kernels. As such, the VGGNet provides a stronger multi-
scale representation model than AlexNet, with fewer parameters.
However, both AlexNet and VGGNet stack filters directly, which
means each feature layer has a relatively fixed receptive field.

Network in Network (NIN) [31] inserts multi-layer percep-
trons as micro-networks into the large network to enhance model
discriminability for local patches within the receptive field. The 1
× 1 convolution introduced in NIN has been a popular module to
fuse features. The GoogLeNet [51] utilizes parallel filters with
different kernel sizes to enhance the multi-scale representation
capability. However, such capability is often limited by the com-
putational constraints due to its limited parameter efficiency. The
Inception Nets [50], [52] stack more filters in each path of the
parallel paths in the GoogLeNet to further expand the receptive
field. On the other hand, the ResNet [23] introduces short connec-
tions to neural networks, thereby alleviating the gradient vanishing
problem while obtaining much deeper network structures. During
the feature extraction procedure, short connections allow different
combinations of convolutional operators, resulting in a large
number of equivalent feature scales. Similarly, densely connected
layers in the DenseNet [26] enable the network to process objects
in a very wide range of scales. DPN [10] combines the ResNet
with DenseNet to enable feature re-usage ability of ResNet and
the feature exploration ability of DenseNet. The recently proposed
DLA [60] method combines layers in a tree structure. The hierar-
chical tree structure enables the network to obtain even stronger
layer-wise multi-scale representation capability.

2.2 Multi-scale Representations for Vision Tasks
Multi-scale feature representations of CNNs are of great im-
portance to a number of vision tasks including object detec-
tion [43], face analysis [4], [41], edge detection [37], semantic
segmentation [6], salient object detection [34], [65], and skeleton
detection [67], boosting the model performance of those fields.

2.2.1 Object detection.
Effective CNN models need to locate objects of different scales
in a scene. Earlier works such as the R-CNN [18] mainly rely
on the backbone network, i.e., VGGNet [47], to extract features
of multiple scales. He et al. propose an SPP-Net approach [22]
that utilizes spatial pyramid pooling after the backbone network
to enhance the multi-scale ability. The Faster R-CNN method [43]
further proposes the region proposal networks to generate bound-
ing boxes with various scales. Based on the Faster R-CNN, the



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2020 3

FPN [32] approach introduces feature pyramid to extract features
with different scales from a single image. The SSD method [36]
utilizes feature maps from different stages to process visual
information at different scales.

2.2.2 Semantic segmentation.
Extracting essential contextual information of objects requires
CNN models to process features at various scales for effective
semantic segmentation. Long et al. [38] propose one of the
earliest methods that enables multi-scale representations of the
fully convolutional network (FCN) for semantic segmentation
task. In DeepLab, Chen et al. [6], [7] introduces cascaded atrous
convolutional module to expand the receptive field further while
preserving spatial resolutions. More recently, global context infor-
mation is aggregated from region-based features via the pyramid
pooling scheme in the PSPNet [64].

2.2.3 Salient object detection.
Precisely locating the salient object regions in an image requires
an understanding of both large-scale context information for
the determination of object saliency, and small-scale features to
localize object boundaries accurately [66]. Early approaches [3]
utilize handcrafted representations of global contrast [13] or multi-
scale region features [53]. Li et al. [29] propose one of the earliest
methods that enables multi-scale deep features for salient object
detection. Later, multi-context deep learning [68] and multi-level
convolutional features [62] are proposed for improving salient
object detection. More recently, Hou et al. [24] introduce dense
short connections among stages to provide rich multi-scale feature
maps at each layer for salient object detection.

2.3 Concurrent Works

Recently, there are some concurrent works aiming at improving
the performance by utilizing the multi-scale features [5], [9],
[11], [49]. Big-Little Net [5] is a multi-branch network composed
of branches with different computational complexity. Octave
Conv [9] decomposes the standard convolution into two resolu-
tions to process features at different frequencies. MSNet [11] uti-
lizes a high-resolution network to learn high-frequency residuals
by using the up-sampled low-resolution features learned by a low-
resolution network. Other than the low-resolution representations
in current works, the HRNet [48], [49] introduces high-resolution
representations in the network and repeatedly performs multi-
scale fusions to strengthen high-resolution representations. One
common operation in [5], [9], [11], [48], [49] is that they all use
pooling or up-sample to re-size the feature map to 2n times of the
original scale to save the computational budget while maintaining
or even improving performance. While in the Res2Net block,
the hierarchical residual-like connections within a single residual
block module enable the variation of receptive fields at a more
granular level to capture details and global features. Experimental
results show that Res2Net module can be integrated with those
novel network designs to further boost the performance.

3 RES2NET

3.1 Res2Net Module

The bottleneck structure shown in Fig. 2(a) is a basic build-
ing block in many modern backbone CNNs architectures,

e.g., ResNet [23], ResNeXt [56], and DLA [60]. Instead of extract-
ing features using a group of 3×3 filters as in the bottleneck block,
we seek alternative architectures with stronger multi-scale feature
extraction ability, while maintaining a similar computational load.
Specifically, we replace a group of 3×3 filters with smaller groups
of filters, while connecting different filter groups in a hierarchical
residual-like style. Since our proposed neural network module
involves residual-like connections within a single residual block,
we name it Res2Net.

Fig. 2 shows the differences between the bottleneck block and
the proposed Res2Net module. After the 1 × 1 convolution, we
evenly split the feature maps into s feature map subsets, denoted
by xi, where i ∈ {1, 2, ..., s}. Each feature subset xi has the
same spatial size but 1/s number of channels compared with the
input feature map. Except for x1, each xi has a corresponding
3× 3 convolution, denoted by Ki(). We denote by yi the output
of Ki(). The feature subset xi is added with the output of Ki−1(),
and then fed into Ki(). To reduce parameters while increasing s,
we omit the 3× 3 convolution for x1. Thus, yi can be written as:

yi =


xi i = 1;
Ki(xi) i = 2;
Ki(xi + yi−1) 2 < i 6 s.

(1)

Notice that each 3 × 3 convolutional operator Ki() could
potentially receive feature information from all feature splits
{xj , j ≤ i}. Each time a feature split xj goes through a 3 × 3
convolutional operator, the output result can have a larger receptive
field than xj . Due to the combinatorial explosion effect, the output
of the Res2Net module contains a different number and different
combination of receptive field sizes/scales.

In the Res2Net module, splits are processed in a multi-scale
fashion, which is conducive to the extraction of both global and
local information. To better fuse information at different scales, we
concatenate all splits and pass them through a 1× 1 convolution.
The split and concatenation strategy can enforce convolutions
to process features more effectively. To reduce the number of
parameters, we omit the convolution for the first split, which can
also be regarded as a form of feature reuse.

In this work, we use s as a control parameter of the scale
dimension. Larger s potentially allows features with richer recep-
tive field sizes to be learnt, with negligible computational/memory
overheads introduced by concatenation.

3.2 Integration with Modern Modules

Numerous neural network modules have been proposed in recent
years, including cardinality dimension introduced by Xie et al.
[56], as well as squeeze and excitation (SE) block presented by
Hu et al. [25]. The proposed Res2Net module introduces the scale
dimension that is orthogonal to these improvements. As shown in
Fig. 3, we can easily integrate the cardinality dimension [56] and
the SE block [25] with the proposed Res2Net module.

3.2.1 Dimension cardinality.
The dimension cardinality indicates the number of groups within
a filter [56]. This dimension changes filters from single-branch to
multi-branch and improves the representation ability of a CNN
model. In our design, we can replace the 3 × 3 convolution with
the 3 × 3 group convolution, where c indicates the number of
groups. Experimental comparisons between the scale dimension
and cardinality are presented in Sec. 4.2 and Sec. 4.4.
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Fig. 3: The Res2Net module can be integrated with the dimension
cardinality [56] (replace conv with group conv) and SE [25]
blocks.

3.2.2 SE block.

A SE block adaptively re-calibrates channel-wise feature re-
sponses by explicitly modelling inter-dependencies among chan-
nels [25]. Similar to [25], we add the SE block right before the
residual connections of the Res2Net module. Our Res2Net module
can benefit from the integration of the SE block, which we have
experimentally demonstrated in Sec. 4.2 and Sec. 4.3.

3.3 Integrated Models

Since the proposed Res2Net module does not have specific re-
quirements of the overall network structure and the multi-scale
representation ability of the Res2Net module is orthogonal to
the layer-wise feature aggregation models of CNNs, we can
easily integrate the proposed Res2Net module into the state-of-
the-art models, such as ResNet [23], ResNeXt [56], DLA [60]
and Big-Little Net [5]. The corresponding models are referred
to as Res2Net, Res2NeXt, Res2Net-DLA, and bLRes2Net-50,
respectively.

The proposed scale dimension is orthogonal to the cardinality
[56] dimension and width [23] dimension of prior work. Thus,
after the scale is set, we adjust the value of cardinality and
width to maintain the overall model complexity similar to its
counterparts. We do not focus on reducing the model size in this
work since it requires more meticulous designs such as depth-
wise separable convolution [40], model pruning [19], and model
compression [14].

For experiments on the ImageNet [44] dataset, we mainly
use the ResNet-50 [23], ResNeXt-50 [56], DLA-60 [60], and
bLResNet-50 [5] as our baseline models. The complexity of the
proposed model is approximately equal to those of the baseline
models, whose number of parameters is around 25M and the
number of FLOPs for an image of 224 × 224 pixels is around
4.2G for 50-layer networks. For experiments on the CIFAR [27]
dataset, we use the ResNeXt-29, 8c×64w [56] as our baseline
model. Empirical evaluations and discussions of the proposed
models with respect to model complexity are presented in Sec. 4.4.

TABLE 1: Top-1 and Top-5 test error on the ImageNet dataset.

top-1 err. (%) top-5 err. (%)

ResNet-50 [23] 23.85 7.13
Res2Net-50 22.01 6.15

InceptionV3 [52] 22.55 6.44
Res2Net-50-299 21.41 5.88

ResNeXt-50 [56] 22.61 6.50
Res2NeXt-50 21.76 6.09

DLA-60 [60] 23.32 6.60
Res2Net-DLA-60 21.53 5.80
DLA-X-60 [60] 22.19 6.13
Res2NeXt-DLA-60 21.55 5.86

SENet-50 [25] 23.24 6.69
SE-Res2Net-50 21.56 5.94

bLResNet-50 [5] 22.41 -
bLRes2Net-50 21.68 6.00

4 EXPERIMENTS

4.1 Implementation Details

We implement the proposed models using the Pytorch framework.
For fair comparisons, we use the Pytorch implementation of
ResNet [23], ResNeXt [56], DLA [60] as well as bLResNet-
50 [5], and only replace the original bottleneck block with the
proposed Res2Net module. Similar to prior work, on the ImageNet
dataset [44], each image is of 224×224 pixels randomly cropped
from a re-sized image. We use the same data argumentation
strategy as [23], [52]. Similar to [23], we train the network using
SGD with weight decay 0.0001, momentum 0.9, and a mini-batch
of 256 on 4 Titan Xp GPUs. The learning rate is initially set to 0.1
and divided by 10 every 30 epochs.

All models for the ImageNet, including the baseline and
proposed models, are trained for 100 epochs with the same training
and data argumentation strategy. For testing, we use the same
image cropping method as [23]. On the CIFAR dataset, we use
the implementation of ResNeXt-29 [56]. For all tasks, we use
the original implementations of baselines and only replace the
backbone model with the proposed Res2Net.

4.2 ImageNet

We conduct experiments on the ImageNet dataset [44], which
contains 1.28 million training images and 50k validation images
from 1000 classes. We construct the models with approximate
50 layers for performance evaluation against the state-of-the-
art methods. More ablation studies are conducted on the CIFAR
dataset.

4.2.1 Performance gain.
Table 1 shows the top-1 and top-5 test error on the ImageNet
dataset. For simplicity, all Res2Net models in Table 1 have the
scale s = 4. The Res2Net-50 has an improvement of 1.84%
on top-1 error over the ResNet-50. The Res2NeXt-50 achieves a
0.85% improvement in terms of top-1 error over the ResNeXt-50.
Also, the Res2Net-DLA-60 outperforms the DLA-60 by 1.27%
in terms of top-1 error. The Res2NeXt-DLA-60 outperforms the
DLA-X-60 by 0.64% in terms of top-1 error. The SE-Res2Net-50
has an improvement of 1.68% over the SENet-50. bLRes2Net-50
has an improvement of 0.73% in terms of top-1 error over the
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TABLE 2: Top-1 and Top-5 test error (%) of deeper networks on
the ImageNet dataset.

top-1 err. top-5 err.

DenseNet-161 [26] 22.35 6.20
ResNet-101 [23] 22.63 6.44
Res2Net-101 20.81 5.57

bLResNet-50. The Res2Net module further enhances the multi-
scale ability of bLResNet at a granular level even bLResNet
is designed to utilize features with different scales as discussed
in Sec. 2.3. Note that the ResNet [23], ResNeXt [56], SE-Net
[25], bLResNet [5], and DLA [60] are the state-of-the-art CNN
models. Compared with these strong baselines, models integrated
with the Res2Net module still have consistent performance gains.

We also compare our method against the InceptionV3 [52]
model, which utilizes parallel filters with different kernel combi-
nations. For fair comparisons, we use the ResNet-50 [23] as the
baseline model and train our model with the input image size of
299×299 pixels, as used in the InceptionV3 model. The proposed
Res2Net-50-299 outperforms InceptionV3 by 1.14% on top-1
error. We conclude that the hierarchical residual-like connection
of the Res2Net module is more effective than the parallel filters
of InceptionV3 when processing multi-scale information. While
the combination pattern of filters in InceptionV3 is dedicatedly
designed, the Res2Net module presents a simple but effective
combination pattern.

4.2.2 Going deeper with Res2Net.
Deeper networks have been shown to have stronger representation
capability [23], [56] for vision tasks. To validate our model
with greater depth, we compare the classification performance of
the Res2Net and the ResNet, both with 101 layers. As shown
in Table 2, the Res2Net-101 achieves significant performance
gains over the ResNet-101 with 1.82% in terms of top-1 error.
Note that the Res2Net-50 has the performance gain of 1.84%
in terms of top-1 error over the ResNet-50. These results show
that the proposed module with additional dimension scale can
be integrated with deeper models to achieve better performance.
We also compare our method with the DenseNet [26]. Compared
with the DenseNet-161, the best performing model of the officially
provided DenseNet family, the Res2Net-101 has an improvement
of 1.54% in terms of top-1 error.

4.2.3 Effectiveness of scale dimension.
To validate our proposed dimension scale, we experimentally
analyze the effect of different scales. As shown in Table 3,
the performance increases with the increase of scale. With the
increase of scale, the Res2Net-50 with 14w×8s achieves perfor-
mance gains over the ResNet-50 with 1.99% in terms of top-
1 error. Note that with the preserved complexity, the width of
Ki() decreases with the increase of scale. We further evaluate
the performance gain of increasing scale with increased model
complexity. The Res2Net-50 with 26w×8s achieves significant
performance gains over the ResNet-50 with 3.05% in terms of top-
1 error. A Res2Net-50 with 18w×4s also outperforms the ResNet-
50 by 0.93% in terms of top-1 error with only 69% FLOPs. Table 3
shows the Runtime under different scales, which is the average
time to infer the ImageNet validation set with the size of 224
× 224. Although the feature splits {yi} need to be computed

TABLE 3: Top-1 and Top-5 test error (%) of Res2Net-50 with
different scales on the ImageNet dataset. Parameter w is the width
of filters, and s is the number of scale, as described in Equation (1).

Setting FLOPs Runtime top-1 err. top-5 err.

ResNet-50 64w 4.2G 149ms 23.85 7.13

Res2Net-50
( Preserved
complexity)

48w×2s 4.2G 148ms 22.68 6.47
26w×4s 4.2G 153ms 22.01 6.15
14w×8s 4.2G 172ms 21.86 6.14

Res2Net-50
( Increased
complexity)

26w×4s 4.2G - 22.01 6.15
26w×6s 6.3G - 21.42 5.87
26w×8s 8.3G - 20.80 5.63

Res2Net-50-L 18w×4s 2.9G 106ms 22.92 6.67

TABLE 4: Top-1 test error (%) and model size on the CIFAR-100
dataset. Parameter c indicates the value of cardinality, and w is the
width of filters.

Params top-1 err.

Wide ResNet [61] 36.5M 20.50
ResNeXt-29, 8c×64w [56] (base) 34.4M 17.90
ResNeXt-29, 16c×64w [56] 68.1M 17.31
DenseNet-BC (k = 40) [26] 25.6M 17.18
Res2NeXt-29, 6c×24w×4s 24.3M 16.98
Res2NeXt-29, 8c×25w×4s 33.8M 16.93
Res2NeXt-29, 6c×24w×6s 36.7M 16.79

ResNeXt-29, 8c×64w-SE [25] 35.1M 16.77
Res2NeXt-29, 6c×24w×4s-SE 26.0M 16.68
Res2NeXt-29, 8c×25w×4s-SE 34.0M 16.64
Res2NeXt-29, 6c×24w×6s-SE 36.9M 16.56

sequentially due to hierarchical connections, the extra run-time
introduced by Res2Net module can often be ignored. Since the
number of available tensors in a GPU is limited, there are typically
sufficient parallel computations within a single GPU clock period
for the typical setting of Res2Net, i.e., s = 4.

4.3 CIFAR

We also conduct some experiments on the CIFAR-100
dataset [27], which contains 50k training images and 10k testing
images from 100 classes. The ResNeXt-29, 8c×64w [56] is used as
the baseline model. We only replace the original basic block with
our proposed Res2Net module while keeping other configurations
unchanged. Table 4 shows the top-1 test error and model size
on the CIFAR-100 dataset. Experimental results show that our
method surpasses the baseline and other methods with fewer pa-
rameters. Our proposed Res2NeXt-29, 6c×24w×6s outperforms
the baseline by 1.11%. Res2NeXt-29, 6c×24w×4s even outper-
forms the ResNeXt-29, 16c×64w with only 35% parameters. We
also achieve better performance with fewer parameters, compared
with DenseNet-BC (k = 40). Compared with Res2NeXt-29,
6c×24w×4s, Res2NeXt-29, 8c×25w×4s achieves a better result
with more width and cardinality, indicating that the dimension
scale is orthogonal to dimension width and cardinality. We also
integrate the recently proposed SE block into our structure. With
fewer parameters, our method still outperforms the ResNeXt-29,
8c×64w-SE baseline.
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Fig. 4: Visualization of class activation mapping [45], using ResNet-50 and Res2Net-50 as backbone networks.
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4.4 Scale Variation

Similar to Xie et al. [56], we evaluate the test performance
of the baseline model by increasing different CNN dimensions,
including scale (Equation (1)), cardinality [56], and depth [47].
While increasing model capacity using one dimension, we fix all
other dimensions. A series of networks are trained and evaluated
under these changes. Since [56] has already shown that increas-
ing cardinality is more effective than increasing width, we only
compare the proposed dimension scale with cardinality and depth.

Fig. 5 shows the test precision on the CIFAR-100 dataset with
regard to the model size. The depth, cardinality, and scale of the
baseline model are 29, 6 and 1, respectively. Experimental results
suggest that scale is an effective dimension to improve model per-
formance, which is consistent with what we have observed on the
ImageNet dataset in Sec. 4.2. Moreover, increasing scale is more
effective than other dimensions, resulting in quicker performance
gains. As described in Equation (1) and Fig. 2, for the case of
scale s = 2, we only increase the model capacity by adding more
parameters of 1× 1 filters. Thus, the model performance of s = 2
is slightly worse than that of increasing cardinality. For s = 3, 4,
the combination effects of our hierarchical residual-like structure
produce a rich set of equivalent scales, resulting in significant
performance gains. However, the models with scale 5 and 6 have
limited performance gains, about which we assume that the image
in the CIFAR dataset is too small (32×32) to have many scales.

TABLE 5: Object detection results on the PASCAL VOC07 and
COCO datasets, measured using AP (%) and AP@IoU=0.5 (%).
The Res2Net has similar complexity compared with its counter-
parts.

Dataset Backbone AP AP@IoU=0.5

VOC07 ResNet-50 72.1 -
Res2Net-50 74.4 -

COCO ResNet-50 31.1 51.4
Res2Net-50 33.7 53.6

TABLE 6: Average Precision (AP) and Average Recall (AR) of
object detection with different sizes on the COCO dataset.

Object size
Small Medium Large All

ResNet-50 AP
(%)

13.5 35.4 46.2 31.1
Res2Net-50 14.0 38.3 51.1 33.7
Improve. +0.5 +2.9 +4.9 +2.6

ResNet-50 AR
(%)

21.8 48.6 61.6 42.8
Res2Net-50 23.2 51.1 65.3 45.0
Improve. +1.4 +2.5 +3.7 +2.2

4.5 Class Activation Mapping

To understand the multi-scale ability of the Res2Net, we visualize
the class activation mapping (CAM) using Grad-CAM [45], which
is commonly used to localize the discriminative regions for image
classification. In the visualization examples shown in Fig. 4,
stronger CAM areas are covered with lighter colors. Compared
with ResNet, the Res2Net based CAM results have more concen-
trated activation maps on small objects such as ‘baseball’ and
‘penguin’. Both methods have similar activation maps on the
middle size objects, such as ‘ice cream’. Due to stronger multi-
scale ability, the Res2Net has activation maps that tend to cover
the whole object on big objects such as ‘bulbul’, ‘mountain dog’,
‘ballpoint’, and ‘mosque’, while activation maps of ResNet only
cover parts of objects. Such ability of precisely localizing CAM
region makes the Res2Net potentially valuable for object region
mining in weakly supervised semantic segmentation tasks [54].
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TABLE 7: Performance of semantic segmentation on PASCAL
VOC12 val set using Res2Net-50 with different scales. The
Res2Net has similar complexity compared with its counterparts.

Backbone Setting Mean IoU (%)

ResNet-50 64w 77.7

Res2Net-50

48w×2s 78.2
26w×4s 79.2
18w×6s 79.1
14w×8s 79.0

ResNet-101 64w 79.0
Res2Net-101 26w×4s 80.2

4.6 Object Detection
For object detection task, we validate the Res2Net on the PAS-
CAL VOC07 [17] and MS COCO [33] datasets, using Faster R-
CNN [43] as the baseline method. We use the backbone network
of ResNet-50 vs. Res2Net-50, and follow all other implementation
details of [43] for a fair comparison. Table 5 shows the object
detection results. On the PASCAL VOC07 dataset, the Res2Net-
50 based model outperforms its counterparts by 2.3% on average
precision (AP). On the COCO dataset, the Res2Net-50 based
model outperforms its counterparts by 2.6% on AP, and 2.2%
on AP@IoU=0.5.

We further test the AP and average recall (AR) scores for
objects of different sizes as shown in Table 6. Objects are divided
into three categories based on the size, according to [33]. The
Res2Net based model has a large margin of improvement over its
counterparts by 0.5%, 2.9%, and 4.9% on AP for small, medium,
and large objects, respectively. The improvement of AR for small,
medium, and large objects are 1.4%, 2.5%, and 3.7%, respec-
tively. Due to the strong multi-scale ability, the Res2Net based
models can cover a large range of receptive fields, boosting the
performance on objects of different sizes.

4.7 Semantic Segmentation
Semantic segmentation requires a strong multi-scale ability of
CNNs to extract essential contextual information of objects. We
thus evaluate the multi-scale ability of Res2Net on the semantic
segmentation task using PASCAL VOC12 dataset [16]. We fol-
low the previous work to use the augmented PASCAL VOC12
dataset [20] which contains 10582 training images and 1449 val
images. We use the Deeplab v3+ [8] as our segmentation method.
All implementations remain the same with Deeplab v3+ [8] except
that the backbone network is replaced with ResNet and our pro-
posed Res2Net. The output strides used in training and evaluation
are both 16. As shown in Table 7, Res2Net-50 based method
outperforms its counterpart by 1.5% on mean IoU. And Res2Net-
101 based method outperforms its counterpart by 1.2% on mean
IoU. Visual comparisons of semantic segmentation results on
challenging examples are illustrated in Fig. 6. The Res2Net based
method tends to segment all parts of objects regardless of object
size.

4.8 Instance Segmentation
Instance segmentation is the combination of object detection and
semantic segmentation. It requires not only the correct detection
of objects with various sizes in an image but also the precise seg-
mentation of each object. As mentioned in Sec. 4.6 and Sec. 4.7,

TABLE 8: Performance of instance segmentation on the COCO
dataset using Res2Net-50 with different scales. The Res2Net has
similar complexity compared with its counterparts.

Backbone Setting AP AP50 AP75 APS APM APL

ResNet-50 64w 33.9 55.2 36.0 14.8 36.0 50.9

Res2Net-50

48w×2s 34.2 55.6 36.3 14.9 36.8 50.9
26w×4s 35.6 57.6 37.6 15.7 37.9 53.7
18w×6s 35.7 57.5 38.1 15.4 38.1 53.7
14w×8s 35.3 57.0 37.5 15.6 37.5 53.4

TABLE 9: Salient object detection results on different datasets,
measured using F-measure and Mean Absolute Error (MAE). The
Res2Net has similar complexity compared with its counterparts.

Dataset Backbone F-measure↑ MAE ↓

ECSSD ResNet-50 0.910 0.065
Res2Net-50 0.926 0.056

PASCAL-S ResNet-50 0.823 0.105
Res2Net-50 0.841 0.099

HKU-IS ResNet-50 0.894 0.058
Res2Net-50 0.905 0.050

DUT-OMRON ResNet-50 0.748 0.092
Res2Net-50 0.800 0.071

both object detection and semantic segmentation require a strong
multi-scale ability of CNNs. Thus, the multi-scale representation
is quite beneficial to instance segmentation. We use the Mask R-
CNN [21] as the instance segmentation method, and replace the
backbone network of ResNet-50 with our proposed Res2Net-50.
The performance of instance segmentation on MS COCO [33]
dataset is shown in Table 8. The Res2Net-26w×4s based method
outperforms its counterparts by 1.7% on AP and 2.4% on AP50.
The performance gains on objects with different sizes are also
demonstrated. The improvement of AP for small, medium, and
large objects are 0.9%, 1.9%, and 2.8%, respectively. Table 8 also
shows the performance comparisons of Res2Net under the same
complexity with different scales. The performance shows an over-
all upward trend with the increase of scale. Note that compared
with the Res2Net-50-48w×2s, the Res2Net-50-26w×4s has an
improvement of 2.8 % on APL, while the Res2Net-50-48w×2s
has the same APL compared with ResNet-50. We assume that
the performance gain on large objects is benefited from the extra
scales. When the scale is relatively larger, the performance gain is
not obvious. The Res2Net module is capable of learning a suitable
range of receptive fields. The performance gain is limited when the
scale of objects in the image is already covered by the available
receptive fields in the Res2Net module. With fixed complexity, the
increased scale results in fewer channels for each receptive field,
which may reduce the ability to process features of a particular
scale.

4.9 Salient Object Detection
Pixel level tasks such as salient object detection also require the
strong multi-scale ability of CNNs to locate both the holistic
objects as well as their region details. Here we use the latest
method DSS [24] as our baseline. For a fair comparison, we only
replace the backbone with ResNet-50 and our proposed Res2Net-
50, while keeping other configurations unchanged. Following [24],
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Fig. 6: Visualization of semantic segmentation results [8], using ResNet-101 and Res2Net-101 as backbone networks.

Images GT ResNet-50 Res2Net-50

Fig. 7: Examples of salient object detection [24] results, using
ResNet-50 and Res2Net-50 as backbone networks, respectively.

we train those two models using the MSRA-B dataset [35], and
evaluate results on ECSSD [58], PASCAL-S [30], HKU-IS [29],
and DUT-OMRON [59] datasets. The F-measure and Mean Abso-
lute Error (MAE) are used for evaluation. As shown in Table 9,
the Res2Net based model has a consistent improvement compared
with its counterparts on all datasets. On the DUT-OMRON dataset
(containing 5168 images), the Res2Net based model has a 5.2%
improvement on F-measure and a 2.1% improvement on MAE,
compared with ResNet based model. The Res2Net based approach
achieves greatest performance gain on the DUT-OMRON dataset,
since this dataset contains the most significant object size variation
compared with the other three datasets. Some visual comparisons
of salient object detection results on challenging examples are
illustrated in Fig. 7.

4.10 Key-points Estimation
Human parts are of different sizes, which requires the key-points
estimation method to locate human key-points with different
scales. To verify whether the multi-scale representation ability of
Res2Net can benefit the task of key-points estimation, we use
the SimpleBaseline [55] as the key-points estimation method and
only replace the backbone with the proposed Res2Net. All imple-
mentations including the training and testing strategies remain the
same with the SimpleBaseline [55]. We train the model using the
COCO key-point detection dataset [33], and evaluate the model

TABLE 10: Performance of key-points estimation on the COCO
validation set. The Res2Net has similar complexity compared with
its counterparts.

Backbone AP AP50 AP75 APM APL

ResNet-50 70.4 88.6 78.3 67.1 77.2
Res2Net-50 73.7 92.5 81.4 70.8 78.2

ResNet-101 71.4 89.3 79.3 68.1 78.1
Res2Net-101 74.4 92.6 82.6 72.0 78.5

using the COCO validation set. Following common settings, we
use the same person detectors in SimpleBaseline [55] for evalua-
tion. Table 10 shows the performance of key-points estimation
on the COCO validation set using Res2Net. The Res2Net-50
and Res2Net-101 based models outperform baselines on AP by
3.3% and 3.0%, respectively. Also, Res2Net based models have
considerable performance gains on human with different scales
compared with baselines.

5 CONCLUSION AND FUTURE WORK

We present a simple yet efficient block, namely Res2Net, to further
explore the multi-scale ability of CNNs at a more granular level.
The Res2Net exposes a new dimension, namely “scale”, which
is an essential and more effective factor in addition to existing
dimensions of depth, width, and cardinality. Our Res2Net module
can be integrated with existing state-of-the-art methods with no
effort. Image classification results on CIFAR-100 and ImageNet
benchmarks suggested that our new backbone network consis-
tently performs favourably against its state-of-the-art competitors,
including ResNet, ResNeXt, DLA, etc.

Although the superiority of the proposed backbone model
has been demonstrated in the context of several representative
computer vision tasks, including class activation mapping, object
detection, and salient object detection, we believe multi-scale
representation is essential for a much wider range of application
areas. To encourage future works to leverage the strong multi-
scale ability of the Res2Net, the source code is available on
https://mmcheng.net/res2net/.

https://mmcheng.net/res2net/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, AUGUST 2020 9

ACKNOWLEDGMENTS

This research was supported by NSFC (NO. 61620106008,
61572264), the national youth talent support program,
and Tianjin Natural Science Foundation (17JCJQJC43700,
18ZXZNGX00110).

REFERENCES

[1] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):509–522, 2002.

[2] A. Borji, M.-M. Cheng, Q. Hou, H. Jiang, and J. Li. Salient object
detection: A survey. Computational Visual Media, 5(2):117–150, 2019.

[3] A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object detection: A
benchmark. IEEE Transactions on Image Processing, 24(12):5706–5722,
2015.

[4] A. Bulat and G. Tzimiropoulos. How far are we from solving the
2d & 3d face alignment problem?(and a dataset of 230,000 3d facial
landmarks). In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1021–1030, 2017.

[5] C.-F. R. Chen, Q. Fan, N. Mallinar, T. Sercu, and R. Feris. Big-Little Net:
An Efficient Multi-Scale Feature Representation for Visual and Speech
Recognition. In International Conference on Learning Representations,
2019.

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834–848, 2018.

[7] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Rethinking
atrous convolution for semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017.

[8] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation. In The European Conference on Computer Vision (ECCV),
September 2018.

[9] Y. Chen, H. Fang, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, S. Yan, and
J. Feng. Drop an octave: Reducing spatial redundancy in convolutional
neural networks with octave convolution. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[10] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path networks.
In Advances in Neural Information Processing Systems (NIPS), pages
4467–4475, 2017.

[11] B. Cheng, R. Xiao, J. Wang, T. Huang, and L. Zhang. High frequency
residual learning for multi-scale image classification. In British Machine
Vision Conference (BMVC), 2019.

[12] M.-M. Cheng, Y. Liu, W.-Y. Lin, Z. Zhang, P. L. Rosin, and P. H. S. Torr.
Bing: Binarized normed gradients for objectness estimation at 300fps.
Computational Visual Media, 5(1):3–20, Mar 2019.

[13] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. Torr, and S.-M. Hu. Global
contrast based salient region detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(3):569–582, 2015.

[14] Y. Cheng, D. Wang, P. Zhou, and T. Zhang. A survey of model
compression and acceleration for deep neural networks. arXiv preprint
arXiv:1710.09282, 2017.

[15] F. Chollet. Xception: Deep learning with depthwise separable convolu-
tions. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), July 2017.

[16] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes challenge: A retrospective.
International Journal of Computer Vision, 111(1):98–136, 2015.

[17] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (voc) challenge. International Journal
of Computer Vision, 88(2):303–338, 2010.

[18] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
580–587, 2014.

[19] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and con-
nections for efficient neural network. In Advances in Neural Information
Processing Systems (NIPS), pages 1135–1143, 2015.
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