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Figure 1: Examples from our COD10K dataset. Camouflaged objects are concealed in these images. Can you find them?
Best viewed in color and zoomed-in. Answers are presented in the supplementary material.

Abstract

We present a comprehensive study on a new task named
camouflaged object detection (COD), which aims to iden-
tify objects that are “seamlessly” embedded in their sur-
roundings. The high intrinsic similarities between the target
object and the background make COD far more challeng-
ing than the traditional object detection task. To address
this issue, we elaborately collect a novel dataset, called
COD10K, which comprises 10,000 images covering cam-
ouflaged objects in various natural scenes, over 78 object
categories. All the images are densely annotated with cat-
egory, bounding-box, object-/instance-level, and matting-
level labels. This dataset could serve as a catalyst for pro-
gressing many vision tasks, e.g., localization, segmentation,
and alpha-matting, etc. In addition, we develop a simple
but effective framework for COD, termed Search Identifi-
cation Network (SINet). Without any bells and whistles,
SINet outperforms various state-of-the-art object detection
baselines on all datasets tested, making it a robust, gen-
eral framework that can help facilitate future research in
COD. Finally, we conduct a large-scale COD study, eval-
uating 13 cutting-edge models, providing some interesting
findings, and showing several potential applications. Our
research offers the community an opportunity to explore
more in this new field. The code will be available at:
https://github.com/DengPingFan/SINet/

1. Introduction
Can you find the concealed object(s) in each image of

Fig. 1? Biologists call this background matching camou-

* Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com).

(a) Image (b) Generic
object

(c) Salient
object

(d) Camouflaged
object

Figure 2: Given an input image (a), we present the ground-truth
for (b) panoptic segmentation [30] (which detects generic ob-
jects [39,44] including stuff and things), (c) salient instance/object
detection [16, 33, 61, 76] (which detects objects that grasp hu-
man attention), and (d) the proposed camouflaged object detection
task, where the goal is to detect objects that have a similar pattern
(e.g., edge, texture, or color) to the natural habitat. In this case,
the boundaries of the two butterflies are blended with the bananas,
making them difficult to identify.

flage [9], where an animal attempts to adapt their body’s
coloring to match “perfectly” with the surroundings in or-
der to avoid recognition [48]. Sensory ecologists [57] have
found that this camouflage strategy works by deceiving the
visual perceptual system of the observer. Thus, addressing
camouflaged object detection (COD) requires a significant
amount of visual perception [60] knowledge. As shown
in Fig. 2, the high intrinsic similarities between the target
object and the background make COD far more challenging
than the traditional salient object detection [1, 5, 17, 25, 62–
66, 68] or generic object detection [4, 79].

In addition to its scientific value, COD is also beneficial
for applications in the fields of computer vision (for search-
and-rescue work, or rare species discovery), medical image
segmentation (e.g., polyp segmentation [14], lung infection
segmentation [18, 67]), agriculture (e.g., locust detection to
prevent invasion), and art (e.g., for photo-realistic blend-
ing [21], or recreational art [6]).

Currently, camouflaged object detection is not well-

http://dpfan.net/Camouflage/
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Figure 3: Various examples of challenging attributes from our COD10K. See Tab. 2 for details. Best viewed in color, zoomed in.

studied due to the lack of a sufficiently large dataset. To
enable a comprehensive study on this topic, we provide
two contributions. First, we carefully assembled the novel
COD10K dataset exclusively designed for COD. It differs
from current datasets in the following aspects:

• It contains 10K images covering 78 camouflaged ob-
ject categories, such as aquatic, flying, amphibians,
and terrestrial, etc.

• All the camouflaged images are hierarchically anno-
tated with category, bounding-box, object-level, and
instance-level labels, facilitating many vision tasks,
such as localization, object proposal, semantic edge
detection [42], task transfer learning [69], etc.

• Each camouflaged image is assigned with challeng-
ing attributes found in the real-world and matting-
level [73] labeling (requiring ∼60 minutes per image).
These high-quality annotations could help with provid-
ing deeper insight into the performance of algorithms.

Second, using the collected COD10K and three exist-
ing datasets [56, 80, 80] we offer a rigorous evaluation of
13 state-of-the-art (SOTA) baselines [3, 23, 27, 35, 38, 40,
51, 68, 75, 77, 78, 83], making ours the largest COD study.
Moreover, we propose a simple but efficient framework,
named SINet (Search and Identification Net). Remarkably,
the overall training time of SINet is only ∼1 hour and it
achieves SOTA performance on all existing COD datasets,
suggesting that it could be a potential solution to COD. Our
work forms the first complete benchmark for the COD task
in the deep learning era, bringing a novel view to object
detection from a camouflage perspective.

2. Related Work
As suggested in [79], objects can be roughly divided into

three categories: generic objects, salient objects, and cam-
ouflaged objects. We describe detection strategies for each
type as follows.

2.1. Generic and Salient Object Detection

Generic Object Detection (GOD). One of the most pop-
ular directions in computer vision is generic object detec-
tion [11, 30, 37, 55]. Note that generic objects can be either

Dataset Year #Img. #Cls. Att. BBox. Ml. Ins. Cate. Spi. Obj.
CHAMELEON [56] 2018 76 - X

CPD1K [80] 2018 10,00 2 X
CAMO [32] 2019 2,500 8 X X X

COD10K (Ours) 2020 10,000 78 X X X X X X X

Table 1: Summary of COD datasets, showing COD10K offers
much richer labels. Img.: Image. Cls.: Class. Att.: Attributes.
BBox.: Bounding box. Ml.: Alpha-matting [73] level annotation
(Fig. 7). Ins.: Instance. Cate.: Category. Obj.: Object. Spi.:
Explicitly split the Training and Testing Set.

salient or camouflaged; camouflaged objects can be seen as
difficult cases (the 2nd and 3rd row in Fig. 9) of generic
objects. Typical GOD tasks include semantic segmentation
and panoptic segmentation (see Fig. 2 b).
Salient Object Detection (SOD). This task aims to identify
the most attention-grabbing object(s) in an image and then
segment their pixel-level silhouettes [28, 72, 77]. Although
the term “salient” is essentially the opposite of “camou-
flaged” (standout vs. immersion), salient objects can never-
theless provide important information for camouflaged ob-
ject detection, e.g. by using images containing salient ob-
jects as the negative samples.

2.2. Camouflaged Object Detection

Research into camouflaged objects detection, which has
had a tremendous impact on advancing our knowledge of
visual perception, has a long and rich history in biology and
art. Two remarkable studies on camouflaged animals from
Abbott Thayer [58] and Hugh Cott [8] are still hugely influ-
ential. The reader can refer to Stevens et al.’s survey [57]
for more details about this history.
Datasets. CHAMELEON [56] is an unpublished dataset
that has only 76 images with manually annotated object-
level ground-truths (GTs). The images were collected from
the Internet via the Google search engine using “camou-
flaged animal” as a keyword. CPD1K [80] is the earliest
dataset for camouflaged people detection, with 1K images
covering two scene types, namely woodland and snowfield.
Another contemporary dataset is CAMO [32], which has
2.5K images (2K for training, 0.5K for testing) covering
eight categories. It has two sub-dataset, CAMO and MS-
COCO, each of which contains 1.25K images.

Unlike existing datasets, the goal of our COD10K is to
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Figure 4: Statistics and camouflaged category examples from COD10K dataset. (a) Taxonomic system and its histogram distribution. (b)
Image resolution distribution. (c) Word cloud distribution. (d) Object/Instance number of several categories. (e) Examples of sub-classes.

provide a more challenging, higher quality, and densely an-
notated dataset. COD10K is the largest camouflaged ob-
ject detection dataset so far, containing 10K images (6K for
training, 4K for testing). See Tab. 1 for details.
Types of Camouflage. Camouflaged images can be
roughly split into two types: those containing natural cam-
ouflage and those with artificial camouflage. Natural cam-
ouflage is used by animals (e.g., insects, cephalopods) as
a survival skill to avoid recognition by a predator. In con-
trast, artificial camouflage is usually occurs in products (so-
called defects) during the manufacturing process, or is used
in gaming/art to hide information.
COD Formulation. Unlike class-dependent tasks such as
semantic segmentation, COD is a class-independent task.
Thus, the formulation of COD is simple and easy to define.
Given an image, the task requires a camouflaged object de-
tection approach to assign each pixel i a confidence pi ∈
[0,1], where pi denotes the probability score of pixel i. A
score of 0 is given to pixels that don’t belong to the cam-
ouflaged objects, while a score of 1 indicates that a pixel is
fully assigned to the camouflaged objects. This paper fo-
cuses on the object-level COD task, leaving instance-level
COD to our future work.
Evaluation Metrics. Mean absolute error (MAE) is widely
used in SOD tasks. Following Perazzi et al. [49], we also
adopt the MAE (M ) metric to assess the pixel-level accu-
racy between a predicted map C and ground-truth G. How-
ever, while useful for assessing the presence and amount
of error, the MAE metric is not able to determine where
the error occurs. Recently, Fan et al. proposed a human
visual perception based E-measure (Eφ) [13], which si-

multaneously evaluates the pixel-level matching and image-
level statistics. This metric is naturally suited for assess-
ing the overall and localized accuracy of the camouflaged
object detection results. Since camouflaged objects often
contain complex shapes, COD also requires a metric that
can judge structural similarity. We utilize the S-measure
(Sα) [12] as our alternative metric. Recent studies [12, 13]
have suggested that the weighted F-measure (Fwβ ) [43] can
provide more reliable evaluation results than the traditional
Fβ ; thus, we also consider this metric in the COD field.

3. Proposed Dataset
The emergence of new tasks and datasets [7, 11, 36, 47,

82] has led to rapid progress in various areas of computer
vision. For instance, ImageNet [52] revolutionized the use
of deep models for visual recognition. With this in mind,
our goals for studying and developing a dataset for COD
are: (1) to provide a new challenging task, (2) to promote
research in a new topic, and (3) to spark novel ideas. Ex-
emplars of COD10K are shown in Fig. 1&3, and Fig. 4 (e).
We will describe the details of COD10K in terms of three
key aspects, as follows. The COD10K is available at here.

3.1. Image Collection

As suggested by [17, 50], the quality of annotation and
size of a dataset are determining factors for its lifespan as
a benchmark. To this end, COD10K contains 10,000 im-
ages (5,066 camouflaged, 3,000 background, 1,934 non-
camouflaged), divided into 10 super-classes, and 78 sub-
classes (69 camouflaged, nine non-camouflaged) which are
collected from multiple photography websites.

http://dpfan.net/COD10K/
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Figure 5: Left: Co-attributes distribution over COD10K. The
number in each grid indicates the total number of images. Right:
Multi-dependencies among these attributes. A larger arc length in-
dicates a higher probability of one attribute correlating to another.

Attr Description

MO Multiple Objects. Image contains at least two objects.
BO Big Object. Ratio (τbo) between object area and image area≥0.5.
SO Small Object. Ratio (τso) between object area and image area≤0.1.
OV Out-of-View. Object is clipped by image boundaries.
OC Occlusions. Object is partially occluded.
SC Shape Complexity. Object contains thin parts (e.g., animal foot).
IB Indefinable Boundaries. The foreground and background areas

around the object have similar colors (χ2 distance τgc between
RGB histograms less than 0.9).

Table 2: Attribute descriptions (see examples in Fig. 3).

Most camouflaged images are from Flicker and have
been applied for academic use with the following key-
words: camouflaged animal, unnoticeable animal, camou-
flaged fish, camouflaged butterfly, hidden wolf spider, walk-
ing stick, dead-leaf mantis, bird, sea horse, cat, pygmy sea-
horses, etc. (see Fig. 4 e) The remaining camouflaged im-
ages (around 200 images) come from other websites, in-
cluding Visual Hunt, Pixabay, Unsplash, Free-images, etc.,
which release public-domain stock photos, free from copy-
right and loyalties. To avoid selection bias [17], we also
collected 3,000 salient images from Flickr. To further en-
rich the negative samples, 1,934 non-camouflaged images,
including forest, snow, grassland, sky, seawater and other
categories of background scenes, were selected from the In-
ternet. For more details on the image selection scheme, we
refer to Zhou et al. [81].

3.2. Professional Annotation

Recently released datasets [10, 15, 16] have shown that
establishing a taxonomic system is crucial when creating
a large-scale dataset. Motivated by [45], our annotations
(obtained via crowdsourcing) are hierarchical (category�
bounding box� attribute� object/instance).
• Categories. As illustrated in Fig. 4 (a), we first cre-

ate five super-class categories. Then, we summarize the 69
most frequently appearing sub-class categories according to
our collected data. Finally, we label the sub-class and super-
class of each image. If the candidate image doesn’t belong
to any established category, we classify it as ‘other’.
• Bounding boxes. To extend COD10K for the camou-

flaged object proposal task, we also carefully annotate the
bounding boxes for each image.
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Figure 6: Comparison between the proposed COD10K and ex-
isting datasets. COD10K has smaller objects (top-left), contains
more difficult camouflage (top-right), and suffers from less center
bias (bottom-left/right).

• Attributes. In line with the literature [17, 50], we label
each camouflaged image with highly challenging attributes
faced in natural scenes, e.g., occlusions, indefinable bound-
aries. Attribute descriptions are provided in Tab. 2, and the
co-attribute distribution is shown in Fig. 5.
• Objects/Instances. We stress that existing COD

datasets focus exclusively on object-level labels (Tab. 1).
However, being able to parse an object into its instances is
important for computer vision researchers to be able to edit
and understand a scene. To this end, we further annotate
objects at an instance-level, like COCO [36], resulting in
5,069 object-level masks and 5,930 instance-level GTs.

3.3. Dataset Features and Statistics

• Object size. Following [17], we plot the normalized
object size in Fig. 6 (top-left), i.e., the size distribution from
0.01%∼ 80.74% (avg.: 8.94%), showing a broader range
compared to CAMO-COCO, CPD1K, and CHAMELEON.
• Global/Local contrast. To evaluate whether an object

is easy to detect, we describe it using the global/local con-
trast strategy [34]. Fig. 6 (top-right) shows that objects in
COD10K are more challenging than those in other datasets.
• Center bias. This commonly occurs when taking a

photo, as humans are naturally inclined to focus on the cen-
ter of a scene. We adopt the strategy described in [17] to
analyze this bias. Fig. 6 (bottom) shows that our dataset
suffers from less center bias than others.

Pass Reject

Figure 7: Alpha-matting [73] for high-quality annotation.
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• Quality control. To ensure high-quality annotation, we
invited three viewers to participate in the labeling process
for 10-fold cross-validation. Fig. 7 shows examples that
were passed/rejected. This instance-level annotation costs
∼ 60 minutes per image on average.
• Super/Sub-class distribution. COD10K includes five

super-classes (terrestrial, atmobios, aquatic, amphibian,
other) and 69 sub-classes (e.g., bat-fish, lion, bat, frog, etc.).
Examples of the wordcloud and object/instance number for
various categories are shown in Fig. 4 c&d, respectively.
• Resolution distribution. As noted in [70], high-

resolution data provides more object boundary details for
model training and yields better performance when testing.
Fig. 4 (b) presents the resolution distribution of COD10K,
which includes a large number of Full HD 1080p images.
• Dataset splits. To provide a large amount of training

data for deep learning models, COD10K is split into 6,000
images for training and 4,000 for testing, randomly selected
from each sub-class.

4. Proposed Framework

Motivation. Biological studies [22] have shown that, when
hunting, a predator will first judge whether a potential prey
exists, i.e., it will search for a prey; then, the target animal
can be identified; and, finally, it can be caught.
Overview. The proposed SINet framework is inspired by
the first two stages of hunting. It includes two main mod-
ules: the search module (SM) and the identification module
(IM). The former (§ 4.1) is responsible for searching for a
camouflaged object, while the latter (§ 4.2) is then used to
precisely detect it.

4.1. Search Module (SM)

Neuroscience experiments have verified that, in the hu-
man visual system, a set of various sized population Recep-
tive Fields (pRFs) helps to highlight the area close to the
retinal fovea, which is sensitive to small spatial shifts [41].
This motivates us to use an RF [41,68] component to incor-
porate more discriminative feature representations during
the searching stage (usually in a small/local space). Specif-
ically, for an input image I ∈ RW×H×3, a set of features
{Xk}4k=0 is extracted from ResNet-50 [24]. To retain more
information, we modify the parameter of stride = 1 to have
the same resolution in the second layer. Thus, the resolution
of each layer is {[Hk ,

W
k ], k = 4, 4, 8, 16, 32}.

Recent evidence [78] has shown that low-level features
in shallow layers preserve spatial details for constructing
object boundaries, while high-level features in deep layers
retain semantic information for locating objects. Due to
this inherent property of neural networks, we divide the ex-
tracted features into low-level {X0,X1}, middle-level X2,
high-level {X3,X4} and combine them though concate-
nation, up-sampling, and down-sampling operations. Un-
like [78], our SINet leverages a densely connected strat-
egy [26] to preserve more information from different lay-
ers and then uses the modified RF [41] component to en-
large the receptive field. For example, we fuse the low-
level features {X0,X1} using a concatenation operation and
then down-sample the resolution by half. This new feature
rfx1x24 is then further fed into the RF component to gener-
ate the output feature rfs4 . As shown in Fig. 8, after com-
bining the three levels of features, we have a set of enhanced
features {rfsk , k = 1, 2, 3, 4} for learning robust cues.
Receptive Field (RF). The RF component includes five



branches {bk, k = 1, . . . , 5}. In each branch, the first con-
volutional (Bconv) layer has dimensions 1×1 to reduce the
channel size to 32. This is followed by two other layers: a
(2k−1)×(2k−1) Bconv layer and a 3×3 Bconv layer with
a specific dilation rate (2k − 1) when k > 2. The first four
branches are concatenated and then their channel size is re-
duced to 32 with a 1 × 1 Bconv operation. Finally, the 5th

branch is added in and the whole module is fed to a ReLU
function to obtain the feature rfk.

4.2. Identification Module (IM)

After obtaining the candidate features from the previous
search module, in the identification module, we need to pre-
cisely detect the camouflaged object. We extend the partial
decoder component (PDC) [68] with a densely connected
feature. More specifically, the PDC integrates four levels of
features from SM. Thus, the coarse camouflage map Cs can
be computed by

Cs = PDs(rf
s
1 , rf

s
2 , rf

s
3 , rf

s
4 ), (1)

where {rfsk = rfk, k = 1, 2, 3, 4}. Existing litera-
ture [40, 68] has shown that attention mechanisms can ef-
fectively eliminate interference from irrelevant features. We
introduce a search attention (SA) module to enhance the
middle-level features X2 and obtain the enhanced camou-
flage map Ch:

Ch = fmax(g(X2, σ, λ), Cs), (2)
where g(·) is the SA function, which is actually a typical
Gaussian filter with standard deviation σ = 32 and kernel
size λ = 4, followed by a normalization operation. fmax(·)
is a maximum function that highlights the initial camouflage
regions of Cs.

To holistically obtain the high-level features, we further
utilize PDC to aggregate another three layers of features,
enhanced by the RF function, and obtain our final camou-
flage map Ci

Ci = PDi(rf
i
1, rf

i
2, rf

i
3), (3)

where {rf ik = rfk, k = 1, 2, 3}. The difference between
PDs and PDi is the number of input features.
Partial Decoder Component (PDC). Formally, given fea-
tures {rf ck , k ∈ [m, . . . ,M ], c ∈ [s, i]} from the search
and identification stages, we generate new features {rf c1k }
using the context module. Element-wise multiplication
is adopted to decrease the gap between adjacent features.
Specifically, for the shallowest feature, e.g., rfs4 , we set
rf c1M = rf c2M when k = M . For the deeper feature, e.g.,
rf c1k , k < M , we update it as rf c2k :

rf c2k = rf c1k ⊗ΠM
j=k+1Bconv(UP (f c1j )), (4)

where k ∈ [m, . . . ,M − 1], Bconv(·) is a sequential op-
eration that combines a 3 × 3 convolution followed by

batch normalization, and a ReLU function. UP (·) is an up-
sampling operation with a 2j−k ratio. Finally, we combine
these discriminative features via a concatenation operation.
Our loss function for training SINet is the cross entropy [77]
loss LCE . The total loss function L is:

L = Ls
CE(Ccsm, G) + Li

CE(Ccim, G), (5)

whereCcsm andCcim are the two camouflaged object maps
obtained after Cs and Ci are up-sampled to a resolution of
352×352.

4.3. Implementation Details.

SINet is implemented in PyTorch and trained with the
Adam optimizer [29]. During the training stage, the batch
size is set to 36, and the learning rate starts at 1e-4. The
whole training time is only about 70 minutes for 30 epochs
(early-stop strategy). The running time is measured on the
platform of Intelr i9-9820X CPU @3.30GHz× 20 and TI-
TAN RTX. The inference time is 0.2s for a 352×352 image.

5. Benchmark Experiments
5.1. Experimental Settings

Training/Testing Details. To verify the generalizability of
SINet, we provide four training settings, using the train-
ing sets (camouflaged images) from: (i) CPD1K [80], (ii)
CAMO [32] (iii) COD10K, and (iv) CPD1K + CAMO +
COD10K. For CPD1K, we follow [80] and randomly se-
lect 60% of images as the training set. For CAMO, we use
the default training set. For COD10K, we use the default
training camouflaged images. We evaluate our model on
the whole CHAMELEON [56] dataset and the test sets of
CPD1K, CAMO, and COD10K.
Baselines. To the best of our knowledge, there is no deep
network based COD model that is publicly available. We
therefore select 12 deep learning baselines [3,23,27,35,38,
40, 51, 68, 75, 77, 78, 83] according to the following crite-
ria: (1) classical architectures, (2) recently published, (3)
achieve SOTA performance in a specific field, e.g., GOD
or SOD. These baselines are trained with the recommended
parameter settings, using the (iv) training setting.

5.2. Results and Data Analysis

Performance on CHAMELEON. From Tab. 3, com-
pared with the 12 SOTA object detection baselines, our
SINet achieves the best performances across all met-
rics. Note that our model does not apply any auxiliary
edge/boundary features (e.g., EGNet [77], PFANet [78],
PoolNet [38]), preprocessing techniques [46], or post-
processing strategies (e.g., CRF [31], graph cut [2]).
Performance on CPD1K. To investigate the performance
of the algorithm on a particular type of camouflage, we fur-
ther adopt the CPD1K [80] dataset, which only contains



CHAMELEON [56] CPD1K-Test [80] CAMO-Test [32] COD10K-Test (Ours)
Baseline Models Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓
2017 FPN [35] 0.794 0.783 0.590 0.075 0.786 0.767 0.491 0.013 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075
2017 MaskRCNN [23] 0.643 0.778 0.518 0.099 0.614 0.671 0.299 0.037 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080
2017 PSPNet [75] 0.773 0.758 0.555 0.085 0.765 0.776 0.430 0.017 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080
2018 UNet++ [83] 0.695 0.762 0.501 0.094 0.714 0.704 0.410 0.017 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086
2018 PiCANet [40] 0.769 0.749 0.536 0.085 0.754 0.751 0.400 0.024 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090
2019 MSRCNN [27] 0.637 0.686 0.443 0.091 0.743 0.789 0.545 0.010 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073
2019 PoolNet [38] 0.776 0.779 0.555 0.081 0.632 0.712 0.245 0.026 0.702 0.698 0.494 0.129 0.705 0.713 0.416 0.074
2019 BASNet [51] 0.687 0.721 0.474 0.118 0.756 0.817 0.512 0.018 0.618 0.661 0.413 0.159 0.634 0.678 0.365 0.105
2019 PFANet [78] 0.679 0.648 0.378 0.144 0.658 0.645 0.224 0.042 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128
2019 CPD [68] 0.853 0.866 0.706 0.052 0.828 0.829 0.579 0.010 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059
2019 HTC [3] 0.517 0.489 0.204 0.129 0.703 0.767 0.452 0.019 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088
2019 EGNet [77] 0.848 0.870 0.702 0.050 0.588 0.503 0.249 0.019 0.732 0.768 0.583 0.104 0.737 0.779 0.509 0.056
2019 ANet-SRM [32] ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ 0.682 0.685 0.484 0.126 ‡ ‡ ‡ ‡
SINet’20 Training setting (i) 0.446 0.431 0.115 0.269 0.523 0.652 0.076 0.201 0.483 0.477 0.189 0.285 0.448 0.476 0.087 0.258
SINet’20 Training setting (ii) 0.737 0.737 0.478 0.103 0.633 0.693 0.190 0.068 0.708 0.706 0.476 0.131 0.685 0.718 0.352 0.092
SINet’20 Training setting (iii) 0.846 0.871 0.691 0.050 0.675 0.721 0.267 0.026 0.665 0.662 0.470 0.128 0.758 0.796 0.517 0.054
SINet’20 Training setting (iv) 0.869 0.891 0.740 0.044 0.849 0.869 0.587 0.010 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

Table 3: Quantitative results on different datasets. The best scores are highlighted in bold. See § 5.1 for training details: (i) CPD1K,
(ii) CAMO, (iii) COD10K, (iv) CPD1K + CAMO + COD10K. Note that the ANet-SRM model (only trained on CAMO) does not have
a publicly available code, thus other results are not available (’‡’). ↑ indicates the higher the score the better. Eφ denotes mean E-
measure [13]. Baseline models are trained using the training setting (iv). Evaluation code: https://github.com/DengPingFan/CODToolbox

camouflaged person. Interestingly, we find that, while the
strong EGNet baseline achieves good performance (Sα >
0.7) on other datasets, its score drops dramatically (Sα =
0.588) on CPD1K due to the large number of small objects.
Specifically, our model outperforms the best CPD [68]
baseline by ∼2% (Sα score).
Performance on CAMO. We also test our model on the
recently proposed CAMO [32] dataset, which includes
various camouflaged objects. Based on the overall per-
formances reported in Tab. 3, we find that the CAMO
dataset is more challenging than the previous two datasets
(CHAMELEON, CPD1K). Again, SINet obtains the best
performance, further demonstrating its robustness.
Performance on COD10K. With the test set (2,026 im-
ages) of our COD10K dataset, we again observe that the
proposed SINet is consistently better than other competitors.
This is because its specially designed search and identifi-
cation modules can automatically learn rich high-/middle-
/low-level features, which are crucial for overcoming chal-
lenging ambiguities in object boundaries (see Fig. 9).
GOD vs. SOD Baselines. One noteworthy finding is that,
among the top-3 models, the GOD model (i.e., FPN [35])
performs worse than the SOD competitors, CPD [68], EG-
Net [77], suggesting that the SOD framework may be better
suited for extension to COD tasks. Compared with either
the GOD [3,23,27,35,75,83] or the SOD [38,40,51,68,77,
78] models, SINet significantly decreases the training time
(e.g., SINet: 1 hour vs. EGNet: 48 hours) and achieves
the SOTA performance on all datasets, showing that it is a
promising solution for the COD problem.
Cross-dataset Generalization. The generalizability and
difficulty of datasets play a crucial role in both training and
assessing different algorithms [61]. Hence, we study these

Trained on:
Tested on: CPD1K

[80]
CAMO

[32]
COD10K

(Ours) Self Mean
others Drop↓

CPD1K [80] 0.626 0.540 0.475 0.626 0.508 18.8%
CAMO [32] 0.654 0.803 0.702 0.803 0.678 15.6%

COD10K (Ours) 0.624 0.742 0.700 0.700 0.683 2.40%
Mean others 0.639 0.641 0.589

Table 4: S-measure↑ [12] results for cross-dataset generalization.
SINet is trained on one (rows) dataset and tested on all datasets
(columns). “Self”: training and testing on the same (diagonal)
dataset. “Mean others”: average score on all except self.

aspects for existing COD datasets, using the cross-dataset
analysis method [59], i.e., training a model on one dataset,
and testing it on others. We select three datasets, includ-
ing CDP1K [80], CAMO [32], and our COD10K. Follow-
ing [61], for each dataset, we randomly select 800 images
as the training set and 200 images as the testing set, since
CPD1K only contains 1,000 images. For fair comparison,
we train SINet on each dataset until the loss is stable.

Tab. 4 provides the S-measure results for the cross-
dataset generalization. Each row lists a model that is trained
on one dataset and tested on all others, indicating the gen-
eralizability of the dataset used for training. Each column
shows the performance of one model tested on a specific
dataset and trained on all others, indicating the difficulty
of the testing dataset. Please note that the training/testing
settings are different from those used in Tab. 3, and thus
the performances are not comparable. As expected, we
find that our COD10K is the most difficult (e.g., the last
row Mean others: 0.589). This is because our dataset con-
tains a variety of challenging camouflaged objects (see § 3).
CPD1K [80] has the worst generalizability (last column
Drop 18.8%), which would make an algorithm ranking 1st

on CPD1K drop to one of the worst on other datasets.
Qualitative Analysis. Fig. 9 presents qualitative compar-

https://github.com/DengPingFan/CODToolbox
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Figure 9: Qualitative results of our SINet and two top-performing baselines on COD10K. Refer to the supplementary material for details.
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Figure 10: More applications. (a) Polyp detection/segmentation
results. (b) Search and rescue system working in a disaster area.

isons between our SINet and two baselines. As can be seen,
PFANet [78] is able to locate the camouflaged objects, but
the outputs are always inaccurate. By further using edge
features, EGNet [77] achieves a relatively more accurate lo-
cation than PFANet. Nevertheless, it still misses the fine
details of objects, especially for the fish in the 1st row. For
all these challenging cases (e.g., indefinable boundaries, oc-
clusions, and small objects), SINet is able to infer the real
camouflaged object with fine details, demonstrating the ro-
bustness of our framework.

6. Potential Applications
Camouflage detection systems (CDS) have various pos-

sible applications. Here, we envision two potential uses.
Medical Image Segmentation. If a medical image seg-
mentation method was equipped with a CDS trained for
specific objects, such as polyp, it could be used to automati-
cally segment polyps (Fig. 10 a), in nature to find & protect
rare species, or even in disaster areas for search and rescue.
Search Engines. Fig. 11 shows an example of search re-
sults from Google. From the results (Fig. 11 a), we notice
that the search engine cannot detect the concealed butterfly,
and thus only provides images with similar backgrounds.
Interestingly, when the search engine is equipped with a
CDS (here, we just simply change the keyword), the en-
gine can identify the camouflaged object and then feedback
several butterfly images (Fig. 11 b).

(b)

(a)

Figure 11: Search engine equipped without (a)/with (b) a CDS.

7. Conclusion
We have presented the first complete benchmark on ob-

ject detection from a camouflage perspective. Specifically,
we have provided a new challenging and densely annotated
COD10K dataset, conducted a large-scale evaluation, de-
veloped a simple but efficient end-to-end SINet framework,
and provided several potential applications. Compared with
existing cutting-edge baselines, SINet is competitive and
generates more visually favorable results. The above contri-
butions offer the community an opportunity to design new
models for the COD task. In future work, we plan to ex-
tend COD10K dataset to provide input of various forms,
for example, RGB-D camouflage object detection (simi-
lar to RGB-D salient object detection [19, 71, 74]), among
others. New techniques such as weakly supervised learn-
ing [53, 54], zero-shot learning [84], VAE [85], and multi-
scale backbone [20] could also be explored.
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