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Abstract. Salient object detection models often demand a considerable
amount of computation cost to make precise prediction for each pixel,
making them hardly applicable on low-power devices. In this paper, we
aim to relieve the contradiction between computation cost and model
performance by improving the network efficiency to a higher degree.
We propose a flexible convolutional module, namely generalized Oct-
Conv (gOctConv), to efficiently utilize both in-stage and cross-stages
multi-scale features, while reducing the representation redundancy by a
novel dynamic weight decay scheme. The effective dynamic weight decay
scheme stably boosts the sparsity of parameters during training, sup-
ports learnable number of channels for each scale in gOctConv, allowing
80% of parameters reduce with negligible performance drop. Utilizing
gOctConv, we build an extremely light-weighted model, namely CSNet,
which achieves comparable performance with ∼ 0.2% parameters (100k)
of large models on popular salient object detection benchmarks. The
source code is publicly available at https://mmcheng.net/sod100k/.
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1 Introduction

Salient object detection (SOD) is an important computer vision task with various
applications in image retrieval [17,5], visual tracking [23], photographic composi-
tion [15], image quality assessment [69], and weakly supervised semantic segmen-
tation [25]. While convolutional neural networks (CNNs) based SOD methods
have made significant progress, most of these methods focus on improving the
state-of-the-art (SOTA) performance, by utilizing both fine details and global
semantics [64,80,83,76,11], attention [3,2], as well as edge cues [12,68,85,61] etc.
Despite the great performance, these models are usually resource-hungry, which
are hardly applicable on low-power devices with limited storage/computational
capability. How to build an extremely light-weighted SOD model with SOTA
performance is an important but less explored area.

The SOD task requires generating accurate prediction scores for every im-
age pixel, thus requires both large scale high level feature representations for
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Fig. 1. FLOPs and performance of models on salient object detection task.

correctly locating the salient objects, as well as fine detailed low level rep-
resentations for precise boundary refinement [12,67,24]. There are two major
challenges towards building an extremely light-weighted SOD models. Firstly,
serious redundancy could appear when the low frequency nature of high level
feature meets the high output resolution of saliency maps. Secondly, SOTA
SOD models [44,72,12,46,10,84] usually rely on ImageNet pre-trained backbone
architectures [19,13] to extract features, which by itself is resource-hungry.

Very recently, the spatial redundancy issue of low frequency features has also
been noticed by Chen et al. [4] in the context of image and video classification.
As a replacement of vanilla convolution, they design an OctConv operation to
process feature maps that vary spatially slower at a lower spatial resolution
to reduce computational cost. However, directly using OctConv [4] to reduce
redundancy issue in the SOD task still faces two major challenges. 1) Only
utilizing two scales, i.e., low and high resolutions as in OctConv, is not sufficient
for fully reduce redundancy issues in the SOD task, which needs much stronger
multi-scale representation ability than classification tasks. 2) The number of
channels for each scale in OctConv is manually selected, requiring lots of efforts
to re-adjust for saliency model as SOD task requires less category information.

In this paper, we propose a generalized OctConv (gOctConv) for building an
extremely light-weighted SOD model, by extending the OctConv in the following
aspects: 1). The flexibility to take inputs from arbitrary number of scales, from
both in-stage features as well as cross-stages features, allows a much larger range
of multi-scale representations. 2). We propose a dynamic weight decay scheme to
support learnable number of channels for each scale, allowing 80% of parameters
reduce with negligible performance drop.

Benefiting from the flexibility and efficiency of gOctConv, we propose a
highly light-weighted model, namely CSNet, that fully explores both in-stage
and Cross-Stages multi-scale features. As a bonus to the extremely low num-
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ber of parameters, our CSNet could be directly trained from scratch without
ImageNet pre-training, avoiding the unnecessary feature representations for dis-
tinguishing between various categories in the recognition task. In summary, we
make two major contributions in this paper:

– We propose a flexible convolutional module, namely gOctConv, to efficiently
utilize both in-stage and cross-stages multi-scale features for SOD task, while
reducing the representation redundancy by a novel dynamic weight decay
scheme.

– Utilizing gOctConv, we build an extremely light-weighted SOD model, namely
CSNet, which achieves comparable performance with ∼ 0.2% parameters
(100k) of SOTA large models on popular SOD benchmarks.

2 Related Works

2.1 Salient Object Detection

Early works [31,62,74,87,6] mainly rely on hand-craft features to detect salient
objects. [37,65,45] utilize CNNs to extract more informative features from image
patches to improve the quality of saliency maps. Inspired by the fully convolu-
tional networks (FCNs) [49], recent works [9,35,80,67,46,78] formulate the salient
object detection as a pixel-level prediction task and predict the saliency map in
an end-to-end manner using FCN based models. [24,66,80,83,57] capture both
fine details and global semantics from different stages of the backbone network.
[51,40,68,85] introduce edge cues to further refine the boundary of saliency maps.
[80,86,70] improve the saliency detection from the perspective of network opti-
mization. Despite the impressive performance, all these CNN based methods
require ImageNet pre-trained powerful backbone networks as the feature extrac-
tor, which usually results in high computational cost.

2.2 Light-weighted Models

Currently, most light-weighted models that are initially designed for classifica-
tion tasks utilize modules such as inverted block [28,27], channel shuffling [82,52],
and SE attention module [27,60] to improve network efficiency. Classification
tasks [58] predict semantic labels for an image, requiring more global informa-
tion but fewer details. Thus, light-weighted models [28,52,82,27,81] designed for
classification use aggressive downsampling strategies at earlier stages to save
FLOPs, which are not applicable to be the feature extractor for SOD task that
requires multi-scale information with both coarse and fine features. Also, SOD
task focuses on determine the salient region while classification tasks predicts
category information. To improve performance under limited computing budget,
the allocation of computational resources, i.e., feature resolution, channels, for
saliency models should be reconsidered.
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2.3 Network Pruning

Many network pruning methods [38,50,48,22,47,21] have been proposed to prune
unimportant filters especially on channel level. [38,20] use the norm criterion to
estimate redundant filters. [50] prunes filters based on statistics information of
the next layer. [48] reuses the scaling factor of BatchNorm layer as the indicator
of filter importance. [21] computes the geometric median of weights to select
filters. [47] utilizes generated weights to estimate the performance of remaining
filters. Mostly pruning approaches rely on regularization tricks such as weight
decay to introduce sparsity to filters. Our proposed dynamic weight decay stably
introduces sparsity for assisting pruning algorithms to prune redundant filters,
resulting in learnable channels for each scale in our proposed gOctConv.

3 Light-weighted Network with Generalized OctConv

3.1 Overview of Generalized OctConv

Originally designed to be a replacement of traditional convolution unit, the
vanilla OctConv [4] shown in Fig. 2 (a) conducts the convolution operation
across high/low scales within a stage. However, only two-scales within a stage
can not introduce enough multi-scale information required for SOD task. The
channels for each scale in vanilla OctConv is manually set, requires lots of ef-
forts to re-adjust for saliency model as SOD task requires less category informa-
tion. Therefore, we propose a generalized OctConv (gOctConv) allows arbitrary
number of input resolutions from both in-stage and cross-stages conv features
with learnable number of channels as shown in Fig. 2 (b). As a generalized
version of vanilla OctConv, gOctConv improves the vanilla OctConv for SOD
task in following aspects: 1). Arbitrary numbers of input and output scales is
available to support a larger range of multi-scale representation. 2). Except for
in-stage features, the gOctConv can also process cross-stages features with ar-
bitrary scales from the feature extractor. 3). The gOctConv supports learnable
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Fig. 2. While originally designed to be a replacement of traditional convolution unit,
the OctConv [4] takes two high/low resolution inputs from the same stage with fixed
number of feature channels. Our gOctConv allows arbitrary number of input resolutions
from both in-stage and cross-stages conv features with learnable number of channels.
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channels for each scale through our proposed dynamic weight decay assisting
pruning scheme. 4). Cross-scales feature interaction can be turned off to sup-
port a large complexity flexibility. The flexible gOctConv allows many instances
under different designing requirements. We will give a detailed introduction of
different instances of gOctConvs in following light-weighted model designing.

3.2 Light-weighted Model Composed of gOctConvs

Overview.As shown in Fig. 3, our proposed light-weighted network, consisting
of a feature extractor and a cross-stages fusion part, synchronously processes
features with multiple scales. The feature extractor is stacked with our proposed
in-layer multi-scale block, namely ILBlocks, and is split into 4 stages according
to the resolution of feature maps, where each stage has 3, 4, 6, and 4 ILBlocks,
respectively. The cross-stages fusion part, composed of gOctConvs, processes
features from stages of the feature extractor to get a high-resolution output.
In-layer Multi-scale Block. ILBlock enhances the multi-scale representation
of features within a stage. gOctConvs are utilized to introduce multi-scale within
ILBlock. Vanilla OctConv requires about 60% FLOPs [4] to achieves the similar
performance to standard convolution, which is not enough for our objective of
designing a highly light-weighted model. To save computational cost, interacting
features with different scales in every layer is unnecessary. Therefore, we apply
an instance of gOctConv that each input channel corresponds to an output
channel with the same resolution through eliminating the cross scale operations.
A depthwise operation within each scale in utilized to further save computational
cost. This instance of gOctConv only requires about 1/channel FLOPs compared
with vanilla OctConv.ILBlock is composed of a vanilla OctConv and two 3 × 3
gOctConvs as shown in Fig. 3. Vanilla OctConv interacts features with two scales
and gOctConvs extract features within each scale. Multi-scale features within a
block are separately processed and interacted alternately. Each convolution is
followed by the BatchNorm [30] and PRelu [18]. Initially, we roughly double the
channels of ILBlocks as the resolution decreases, except for the last two stages
that have the same channel number. Unless otherwise stated, the channels for
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Fig. 3. Illustration of our salient object detection pipeline, which uses gOctConv to
extract both in-stage and cross-stages multi-scale features in a highly efficient way.
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different scales in ILBlocks are set evenly. Learnable channels of OctConvs then
are obtained through the scheme as described in Sec. 3.3.
Cross-stages Fusion. To retain a high output resolution, common methods
retain high feature resolution on high-level of the feature extractor and con-
struct complex multi-level aggregation module, inevitably increase the compu-
tational redundancy. While the value of multi-level aggregation is widely rec-
ognized [16,43], how to efficiently and concisely achieve it remains challenging.
Instead, we simply use gOctConvs to fuse multi-scale features from stages of
the feature extractor and generate the high-resolution output. As a trade-off
between efficiency and performance, features from last three stages are used. A
gOctConv 1 × 1 takes features with different scales from the last conv of each
stage as input and conducts a cross-stages convolution to output features with
different scales. To extract multi-scale features at a granular level, each scale of
features is processed by a group of parallel convolutions with different dilation
rates. Features are then sent to another gOctConv 1 × 1 to generate features
with the highest resolution. Another standard conv 1 × 1 outputs the prediction
result of saliency map. Learnable channels of gOctConvs in this part are also
obtained.

3.3 Learnable Channels for gOctConv

We propose to get learnable channels for each scale in gOctConv by utilizing
our proposed dynamic weight decay assisted pruning during training. Dynamic
weight decay maintains a stable weights distribution among channels while in-
troducing sparsity, helping pruning algorithms to eliminate redundant channels
with negligible performance drop.
Dynamic Weight Decay. The commonly used regularization trick weight
decay [33,77] endows CNNs with better generalization performance. Mehta et
al.[53] shows that weight decay introduces sparsity into CNNs, which helps
to prune unimportant weights. Training with weight decay makes unimportant
weights in CNN have values close to zero. Thus, weight decay has been widely
used in pruning algorithms to introduce sparsity [38,50,48,22,47,21]. The com-
mon implementation of weight decay is by adding the L2 regularization to the
loss function, which can be written as follows:

L = L0 + λ
∑ 1

2
wi

2, (1)

where L0 is the loss for the specific task, wi is the weight of ith layer, and λ is
the weight for weight decay. During back propagation, the weight wi is updated
as

wi ← wi −∇fi (wi)− λwi, (2)

where ∇fi (wi) is the gradient to be updated, and λwi is the decay term, which
is only associated with the weight itself. Applying a large decay term enhances
sparsity, and meanwhile inevitably enlarges the diversity of weights among chan-
nels. Fig. 4 (a) shows that diverse weights cause unstable distribution of outputs
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Fig. 4. a) Left: The averaged standard deviation of outputs among channels from
BatchNorm layer in models trained with/without dynamic weight decay. b) Right:
Distribution of γ in Eqn. (5) of models trained with/without dynamic weight decay.

among channels. Ruan et al.[8] reveals that channels with diverse outputs are
more likely to contain noise, leading to biased representation for subsequent fil-
ters. Attention mechanisms have been widely used to re-calibrate the diverse
outputs with extra blocks and computational cost [29,8]. We propose to relieve
diverse outputs among channels with no extra cost during inference. We argue
that the diverse outputs are mainly caused by the indiscriminate suppression of
decay terms to weights. Therefore, we propose to adjust the weight decay based
on specific features of certain channels. Specifically, during back propagation,
decay terms are dynamically changed according to features of certain channels.
The weight update of the proposed dynamic weight decay is written as

wi ← wi −∇fi (wi)− λd S (xi)wi, (3)

where λd is the weight of dynamic weight decay, xi denotes the features calcu-
lated by wi, and S (xi) is the metric of the feature, which can have multiple
definitions depending on the task. In this paper, our goal is to stabilize the
weight distribution among channels according to features. Thus, we simply use
the global average pooling (GAP) [42] as the metric for a certain channel:

S (xi) =
1

HW

H∑
h=0

W∑
w=0

xih,w, (4)

where H and W are the height and width of the feature map xi. The dynamic
weight decay with the GAP metric ensures that the weights producing large
value features are suppressed, giving a compact and stable weights and outputs
distribution as revealed in Fig. 4. Also, the metric can be defined as other forms
to suit certain tasks as we will study in our future work. Please refer to Sec. 4.3
for a more detailed interpretation of dynamic weight decay.
Learnable channels with model compression. Now, we incorporate dy-
namic weight decay with pruning algorithms to remove redundant weights, so
as to get learnable channels of each scale in gOctConvs. In this paper, we fol-
low [48] to use the weight of BatchNorm layer as the indicator of the channel
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importance. The BatchNorm operation [30] is written as follows:

y =
x− E(x)√
Var(x) + ε

γ + β, (5)

where x and y are input and output features, E(x) and Var(x) are the mean and
variance, respectively, and ε is a small factor to avoid zero variance. γ and β are
learned factors.We apply the dynamic weight decay to γ during training. Fig. 4
(b) reveals that there is a clear gap between important and redundant weights,
and unimportant weights are suppressed to nearly zero (wi < 1e−20). Thus, we
can easily remove channels whose γ is less than a small threshold. The learnable
channels of each resolution features in gOctConv are obtained. The algorithm of
getting learnbale channels of gOctConvs is illustrated in Alg. 1.

Algorithm 1 Learnable Channels for gOctConv with Dynamic Weight Decay

Require: The initial CSNet in which channels for all scales in gOctConvs are set.
Input images X and corresponding label Y .

1: for each iteration i ∈ [1,MaxIteration] do
2: Feed input X into the network to get the result Ŷ ;
3: Compute Loss = criterion(Ŷ , Y );
4: Compute metric for each channel using Eqn. (4);
5: Backward with dynamic weight decay using Eqn. (3).
6: end for
7: Eliminate redundant channels to get learnable channels for each scale in gOctConv.

8: Train for several iterations to fine-tune remaining weights.

4 Experiments

4.1 Implementation

Settings. The implementation of the proposed method is based on the Py-
Torch framework. For light-weighted models, we train models using the Adam
optimizer [32] with a batch-size of 24 for 300 epochs from scratch. Even with
no ImageNet pre-training, the proposed CSNet still achieves comparable per-
formance to large models based on pre-trained backbones [59,19]. The learning
rate is set to 1e-4 initially, and divided by 10 at the epochs of 200, and 250.
We eliminate redundant weights and fine-tune the model for the last 20 epochs
to compress models and get gOctConvs with the learnable channels of different
resolutions. We only use the data augmentation of random flip and crop. The
weight decay of BatchNorms following gOctConvs is replaced with our proposed
dynamic weight decay with the weight of 3 by default while the weight decay
for other weights is set to 5e-3 by default. For large models based on the pre-
trained backbones, we train our models following the implementation of [44].
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Fig. 5. Visualisation of predicted results on salient object detection. Each row gives
the image, GT, and predicted result, respectively.

The commonly used evaluation metrics maximum F-measure (Fβ) [1] and MAE
(M) [7] are used for evaluation. FLOPs of light-weighted models are computed
with an image size of 224 × 224.
Datasets. We following common settings of recent methods [83,46,44,67,66,85]
to train our models using the DUTS-TR [63] dataset, and evaluate the perfor-
mance on several commonly used datasets, including ECSSD [73], PASCAL-
S [41], DUT-O [74], HKU-IS [36], SOD [55], and DUTS-TE [63]. On ablation
studies, the performance on the ECSSD dataset is reported if not mentioned
otherwise.

4.2 Performance Analysis

In this section, we firstly evaluate the performance of our proposed light-weighted
model CSNet with fixed channels. Then, the performance of CSNet with learn-
able channels using dynamic weight decay is also evaluated. Fig. 5 shows the
visualized results of salient object detection using our proposed light-weighted
CSNet. Also, we transfer the proposed cross-stages fusion part to commonly used
large backbones [19] to verify the cross-stages feature extraction ability.
Performance of CSNet with fixed channels in gOctConv. The extrac-
tor model only composed of ILBlocks. With fixed parameters, we adjust the
split-ratio of channels for high/low resolution features in gOctConvs of ILBlocks
to construct models with different FLOPs, denoted by CH/CL. Tab. 1 shows
feature extraction models with different split-ratios of high/low resolution fea-
tures. Extractors achieve an low complexity thanks to the simplified instance of
gOctConvs. Benefiting from the in-stage multi-scale representation and the low
scale features in ILBlock, the extractor-3/1 achieves performance gain of 0.4%
in terms of F-measure with 80% FLOPs over the extractor-1/0. The gOctConvs
in cross-stages fusion part enhance the cross-stages multi-scale ability of the
network while maintaining the high output resolution by utilizing features from
different stages. As shown in Tab. 1, the CSNet-5/5 surpasses the extractor-
3/1 by 1.4% in terms of F-measure with fewer FLOPs. Even in extreme case
that the CSNet-0/1 with only low resolution features in extractor has compara-
ble performance with 44% FLOPs over extractor-1/0 with all high resolution
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Method PARM. FLOPs Fβ ↑ M ↓

Extractor

1/0 180K 0.80G 88.2 0.088
3/1 180K 0.64G 88.6 0.085
5/5 180K 0.45G 88.1 0.086
1/3 180K 0.30G 87.4 0.090
0/1 180K 0.20G 86.4 0.095

CSNet

1/0 211K 0.91G 90.0 0.076
3/1 211K 0.78G 89.9 0.077
5/5 211K 0.61G 90.0 0.077
1/3 211K 0.47G 89.2 0.082
0/1 211K 0.35G 88.2 0.089

CSNet-L
×2 140K 0.72G 91.6 0.066
×1 94K 0.43G 90.0 0.075

Table 1. Performance of CSNet with the fixed split-ratio of channels in gOctConvs,
and CSNet with learnable channels. CSNet denotes the CSNet with the fixed split-ratio
in gOctConvs. Extractor denotes the network only composed of ILBlocks. CSNet-L
denotes the model with learnable channels using Alg. 1.

features. However, manually tune the overall split-ratio of feature channels of
different resolution may achieves sub-optimal balance between performance and
computational cost.

To further verify the effectiveness of the cross-stage fusion (CSF) part on
large models, we implement this part into commonly used backbone network
ResNet [19] and Res2Net [13]. As shown in Tab. 2, the ResNet+CSF achieves
similar performance to the ResNet+PoolNet with 53% parameters and 21%
FLOPs. Unlike other models such as PoolNet that eliminates downsampling
operations to maintain a high feature resolution on high-levels of the backbone,
the gOctConvs obtains both high and low resolution features across different
stages of the backbone, getting a high-resolution output while saving a large
amount of computational cost. When utilizing the recently proposed Res2Net as
the backbone network, the performance is further boosted.
Performance of CSNet with learnable channels in gOctConv. We further
train the model with our proposed dynamic weight decay and get the learnable
channels for gOctConv as described in Alg. 1, named CSNet-L. The channel
for each gOctConv is expanded to enlarge the available space for compression.
Models with channels expanded to k times are denoted by CSNet-×k. Tab. 4
shows that our proposed dynamic weight decay assisted pruning scheme can
compress the model up to 18% of the original model size with negligible perfor-
mance drop. Compared with manually tuned split-ratio of feature resolution, the
learnable channels of gOctConvs obtained by model compression achieves much
better efficiency. As shown in Tab. 1, the compressed CSNet×2-L outperforms
the CSNet-5/5 by 1.6% with fewer parameters and 18% additional FLOPs. The
CSNet×1-L achieves comparable performance compared with CSNet-5/5 with
45% parameters and 70% FLOPs. Tab. 2 shows that CSNet-L series achieve
comparable performance compared with some models with extensive parame-
ters such as SRM [66], and Amulet [80] with ∼ 0.2% parameters. Note that
our light-weighted models are trained from scratch while those large models are
pre-trained with ImageNet. The performance gap between the proposed CSNet
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Model
Complexity ECSSD PASCAL-S DUT-O HKU-IS SOD DUTS-TE

#PARM. FLOPs Fβ M Fβ M Fβ M Fβ M Fβ M Fβ M

ELD [14] 43.15M 17.63G .865 .981 .767 .121 .719 .091 .844 .071 .760 .154 - -
DS [39] 134.27M 211.28G .882 .122 .765 .176 .745 .120 .865 .080 .784 .190 .777 .090
DCL [37] - - .896 .080 .805 .115 .733 .094 .893 .063 .831 .131 .786 .081
RFCN [65] 19.08M 64.95G .898 .097 .827 .118 .747 .094 .895 .079 .805 .161 .786 .090
DHS [45] 93.76M 25.82G .905 .062 .825 .092 - - .892 .052 .823 .128 .815 .065
MSR [35] - - .903 .059 .839 .083 .790 .073 .907 .043 .841 .111 .824 .062
DSS [24] 62.23M 276.37G .906 .064 .821 .101 .760 .074 .900 .050 .834 .125 .813 .065
NLDF [51] 35.48M 57.73G .903 .065 .822 .098 .753 .079 .902 .048 .837 .123 .816 .065
UCF [80] 29.47M 146.42G .908 .080 .820 .127 .735 .131 .888 .073 .798 .164 .771 .116
Amulet [79] 33.15M 40.22G .911 .062 .826 .092 .737 .083 .889 .052 .799 .146 .773 .075
GearNet [26] - - .923 .055 - - .790 .068 .934 .034 .853 .117 - -
PAGR [83] - - .924 .064 .847 .089 .771 .071 .919 .047 - - .854 .055
SRM [66] 53.14M 36.82G .916 .056 .838 .084 .769 .069 .906 .046 .840 .126 .826 .058
DGRL [67] 161.74M 191.28G .921 .043 .844 .072 .774 .062 .910 .036 .843 .103 .828 .049
PiCANet [46] 47.22M 54.05G .932 .048 .864 .075 .820 .064 .920 .044 .861 .103 .863 .050
PoolNet [44] 68.26M 88.89G .940 .042 .863 .075 .830 .055 .934 .032 .867 .100 .886 .040

Light-weighted models designed for other tasks:

Eff.Net [60] 8.64M 2.62G .828 .129 .739 .158 .696 .129 .807 .116 .712 .199 .687 .135
Sf.Netv2 [52] 9.54M 4.35G .870 .092 .781 .127 .720 .100 .853 .078 .779 .163 .743 .096
ENet [56] 0.36M 0.40G .857 .107 .770 .138 .730 .109 .839 .094 .741 .183 .730 .111
CGNet [71] 0.49M 0.69G .868 .099 .784 .130 .727 .108 .849 .088 .772 .168 .742 .106
DABNet [34] 0.75M 1.03G .877 .091 .790 .123 .747 .094 .862 .078 .778 .157 .759 .093
ESPNetv2 [54] 0.79M 0.31G .889 .081 .795 .119 .760 .088 .872 .069 .780 .157 .765 .089
BiseNet [75] 12.80M 2.50G .894 .078 .817 .115 .762 .087 .872 .071 .796 .148 .778 .084

Ours:

CSF+R 36.37M 18.40G .940 .041 .866 .073 .821 .055 .930 .033 .866 .106 .881 .039
CSF+R2 36.53M 18.96G .947 .036 .876 .068 .833 .055 .936 .030 .870 .098 .893 .037

CSNet×1-L 94K 0.43G .900 .075 .819 .110 .777 .087 .889 .065 .809 .149 .799 .082
CSNet×2-L 140K 0.72G .916 .066 .835 .102 .792 .080 .899 .059 .825 .137 .819 .074

Table 2. Performance and complexity comparison with state-of-the-art methods. +R,
R2 denotes using the ImageNet pre-trained ResNet50 [19] and Res2Net50 [13] backbone
network. Unlike previous methods that require the ImageNet pre-trained backbone, our
proposed light-weighted CSNet is trained from scratch without ImageNet pre-training.

and the SOTA models with extensive parameters and FLOPs is only ∼ 3%,
considering that CSNet has the limited capacity with about 0.2% parameters of
large models. We believe that more techniques such as ImageNet pre-training
will bring more performance gain.
Comparison with light-weighted models. To the best of our knowledge,
we are the first work that aims to design an extremely light-weighted model for
SOD task. Therefore, we port several SOTA light-weighted models designed for
other tasks such as classification and semantic segmentation for comparison. All
models share the same training configuration with our training strategy. Tab. 2
shows that our proposed models have considerable improvements compared with
those light-weighted models.

4.3 Dynamic Weight Decay

In this section, we verify the effectiveness of our proposed dynamic weight decay.
We apply different degrees of standard weight decay to achieve the trade-off
between model performance and sparsity, while keeping the weights for dynamic
weight decay unchanged. We insert our proposed dynamic weight decay to the
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Fig. 6. a) Left: Performance and complexity of compressed model using dy-
namic/standard weight decay under different λ as shown in Eqn. (1). b) Right: The
test MAE of models with/without dynamic weight decay.

Pruning Filters [38] Geometric-Median [21]

PARM. FLOPs Fβ M PARM. FLOPs Fβ M

Standard 227K 0.69G 88.7 0.080 Standard 227K 0.70G 88.7 0.083
Dynamic 226K 0.69G 89.4 0.078 Dynamic 226K 0.68G 89.6 0.082

Table 3. Integrating dynamic weight decay into pruning methods. Standard/Dynamic
denote the standard/dynamic weight decay, respectively.

weights of BatchNorm layers while using the standard weight decay on remaining
weights for a fair comparison. Fig. 6 (a) shows the performance and complexity
of the compressed model using dynamic/standard weight decay under different λ
in Eqn. (1). Models trained with dynamic weight decay have better performance
under the same complexity. Also, the performance of dynamic weight decay
based models is less sensitive to the model complexity. We eliminate redundant
channels according to the absolute value of γ in Eqn. (5) as described in Sec. 3.3.
Fig. 4 (b) shows the distribution of γ for models trained with/without dynamic
weight decay. By suppressing weights according to features, dynamic weight
decay enforces the model with more sparsity. Fig. 4 (a) reveals the average
standard deviation of outputs among channels from the BatchNorm layer of
models trained with/without dynamic weight decay. Features of dynamic weight
decay based model are more stabilized due to the stable weight distribution.
Fig. 6 (b) shows the testing MAE of each epoch with/without dynamic weight
decay. Training with dynamic weight decay brings better performance in terms
of MAE and faster convergence. The dynamic weight decay generalizes well on
other tasks such as classification, and semantic segmentation.

Cooperating with pruning methods. By default, we use the pruning method
in [48] to eliminate redundant weights. Since our proposed dynamic weight decay
focuses on introducing sparsity while maintaining a stable and compact distri-
bution of weights among channels, it is orthogonal to commonly use pruning
methods that focus on identify unnecessarily weights. Therefore, we integrate
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Width Prune ×1 ×1.2 ×1.5 ×1.8 ×2.0

Parms
N 211K 298K 455K 645K 788K
Y 94K 109K 118K 134K 140K

Ratio 55% 63% 74% 79% 82%

FLOPs
N 0.61G 0.82G 1.17G 1.58G 1.87G
Y 0.43G 0.52G 0.63G 0.71G 0.72G

Ratio 30% 37% 46% 55% 61%

Fβ
N 90.0 90.7 91.1 91.2 91.5
Y 90.0 90.7 91.2 91.3 91.6

Table 4. The compression ratio of CSNet with different initial channel widths. The
pruning rate is defined as the ratio of model complexity between pruned parts and
complete CSNet.

the dynamic weight decay into several pruning methods as shown in Tab. 3. All
configurations remain the same except for replacing the standard weight decay
to our proposed dynamic weight decay. Pruning methods [38,21] equipped with
dynamic weight decay achieve better performance under the similar parameters.

4.4 CSNet with Learned Channels in gOctConv

Pruning rate & Channel width. An initial training space with a large channel
width is required for learning more useful features. To enlarge the available train-
ing space, we linearly expand the channel number of gOctConvs. A pruning rate
is defined as the ratio of model complexity between pruned parts and complete
CSNet. Tab. 4 shows the pruning rate of CSNet with different initial channel
widths. The split-ratio of gOctConvs for the initial model is set to 5/5. Larger
initial width results in better performance as expected. As the initial width rises,
the complexity of pruned models only has a limited increment. The quality of
the pruned model is dependant on the available training space. With a large
enough training space, results are closing to the optimal. Also, benefited from
the stable distribution introduced by dynamic weight decay, compressed models
have similar or even better performance compared with the initial model.
Visualization of channels of gOctConvs. We visualize the learned channel
number of gOctConvs in Fig. 7. It can be seen that as the network goes deeper,
the feature extraction network shows a trend of utilizing more low resolution
features. Within the same stage, high resolution features are urged in the middle
of the stage. Also, the model trained with dynamic weight decay has a stabler
channel number variation among different layers. Deeper layers contain more
redundant channels compared with shallow layers.

4.5 Run-Time

We compare the run-time of our proposed CSNet with existing models from Tab. 2
as shown in Tab. 5. The run-time is tested with an image of 224 × 224 on a
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Fig. 7. Visualization of the feature extractor of CSNet. Gray is CSNet with fixed
channel, Yellow and Green are the CSNet-L trained with standard/dynamic weight
decay, respectively.

Method FLOPs Run-time Method FLOPs Run-time

PiCANet [45] 54.06G 2850.2ms PoolNet [44] 88.89G 997.3ms
ENet [56] 0.40G 89.9ms ESPNetv2 [54] 0.31G 186.3ms
CSNet×1 0.61G 135.9ms CSNet×1-L 0.43G 95.3ms

Table 5. Run-time using 224 × 224 input on a single core of i7-8700K CPU.

single core of i7-8700K CPU. Our proposed CSNet has more than x10 accelera-
tion compared with large-weight models. With similar speed, CSNet achieves up
to 6% gain in F-measure compared with those models designed for other tasks.
However, there is still a gap between FLOPs and run-time, as current deep
learning frameworks are not optimized for vanilla and our proposed gOctConvs.

5 Conclusion

In this paper, we propose the generalized OctConv with more flexibility to effi-
ciently utilize both in-stage and cross-stages multi-scale features, while reducing
the representation redundancy by a novel dynamic weight decay scheme. The
dynamic weight decay scheme maintains a stable weights distribution among
channels and stably boosts the sparsity of parameters during training. Dynamic
weight decay supports learnable number of channels for each scale in gOctConvs,
allowing 80% of parameters reduce with negligible performance drop. Utilizing
different instances of gOctConvs, we build an extremely light-weighted model,
namely CSNet, which achieves comparable performance with ∼ 0.2% parameters
(100k) of large models on popular salient object detection benchmarks.
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