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Abstract—Supervised deep networks have achieved promising
performance on image denoising, by learning image priors and
noise statistics on plenty pairs of noisy and clean images.
Unsupervised denoising networks are trained with only noisy
images. However, for an unseen corrupted image, both supervised
and unsupervised networks ignore either its particular image
prior, the noise statistics, or both. That is, the networks learned
from external images inherently suffer from a domain gap
problem: the image priors and noise statistics are very different
between the training and test images. This problem becomes more
clear when dealing with the signal dependent realistic noise. To
circumvent this problem, in this work, we propose a novel “Noisy-
As-Clean” (NAC) strategy of training self-supervised denoising
networks. Specifically, the corrupted test image is directly taken
as the “clean” target, while the inputs are synthetic images
consisted of this corrupted image and a second yet similar
corruption. A simple but useful observation on our NAC is: as
long as the noise is weak, it is feasible to learn a self-supervised net-
work only with the corrupted image, approximating the optimal
parameters of a supervised network learned with pairs of noisy
and clean images. Experiments on synthetic and realistic noise
removal demonstrate that, the DnCNN and ResNet networks
trained with our self-supervised NAC strategy achieve compa-
rable or better performance than the original ones and previous
supervised/unsupervised/self-supervised networks. The code is
publicly available at https://github.com/csjunxu/Noisy-As-Clean.

Index Terms—Image denoising, self-supervision, convolutional
neural network.

I. INTRODUCTION

IMAGE denoising is an ill-posed inverse problem to re-
cover a clean image x from the observed noisy image

y = x + no, where no is the observed corrupted noise.
One popular assumption on n is the additive white Gaussian
noise (AWGN) with standard deviation (std) σ, which serves
as a perfect test bed for supervised networks in the deep
learning era [15], [31], [32]. Supervised networks [21], [30],
[41] learn the image priors and noise statistics on plenty
pairs of clean and corrupted images, and achieve promising
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(a) Noisy: 24.62dB/0.4595 (b) Clean Image

(c) DnCNN [41]: 34.23dB/0.8695 (d) DnCNN+NAC: 35.80dB/0.9116

Fig. 1: Denoised images and PSNR/SSIM results of
DnCNN [41] (c) and DnCNN trained by our NAC strategy
(“DnCNN+NAC”) (d) on the color image House (b) corrupted
by AWGN noise (σ = 15) (a).

denoising performance on the images with similar priors and
noise statistics (e.g., AWGN).

With advances on AWGN noise removal [6], [30], [41], a
natural question arises is how these denoising networks can
exert their effect on real noisy photographs. Realistic noise is
signal dependent and more complex than AWGN [28], [29],
[35]. Thus, previous supervised denoising networks unavoid-
ably suffer from a domain gap problem: both the image priors
and noise statistics in training are different from those of
the real-world test images. Recently, several unsupervised [7],
[19], [22], [23] and self-supervised [3], [20] networks have
been developed to get rid of the dependence on clean images,
which are difficult to be obtained in real-world scenarios.
However, unsupervised networks are subjected to the gap on
either image priors or noise statistics, while self-supervised
suffer from the gap on noise statistics, between the external
images for training and the corrupted ones for test. Besides,

https://github.com/csjunxu/Noisy-As-Clean


2

several networks [22], [23] succeed on the zero-mean noise.
But the realistic noise in real-world images is not necessarily
zero-mean [1], [28], [29].

To alleviate the domain gap on image priors and noise
statistics between training and test images, in this paper,
we propose a “Noisy-As-Clean” (NAC) strategy for training
self-supervised denoising networks. In our NAC, we directly
train an image-specific network by taking the corrupted image
y = x + no as the “clean” target. Thus, the domain gap
on image priors are largely bridged by our NAC. To reduce
the gap on noise statistics, for the target corrupted image y,
we take as the input of our NAC a simulated noisy image
z = y+ns consisting of the corrupted image y and a simulated
noise ns, which is statistically close to the corrupted noise no
in y. By this way, our NAC network learns to clean up the
simulated noise ns from the doubly corrupted image z during
training, and thus is able to remove the noise no from the
corrupted image y during test.

A simple but useful observation about our NAC strategy is:
as long as the corrupted noise is “weak”, it is feasible to train a
self-supervised denoising network only with the corrupted test
image, and the optimal parameters are very close to those of a
supervised network trained with a pair of the corrupted image
and its clean version. Though being very simple, our NAC
strategy is very effective for image denoising. In Figure 1,
we compare the denoised images by the vanilla DnCNN [41]
and the DnCNN trained with our NAC (DnCNN+NAC), on
the image “House” corrupted by AWGN (σ = 15). We
observe that the “DnCNN+NAC” achieves better visual quality
and higher PSNR/SSIM results than DnCNN [41], which is
trained on plenty of noisy and clean image pairs. Experiments
on diverse benchmarks demonstrate that, when trained with
our NAC strategy, the DnCNN [41] and ResNet [15] in
Deep Image Prior (DIP) [23] achieve comparable or better
performance than supervised denoising networks on synthetic
and real-world noisy images. Our work reveals that, when
the noise is “weak”, a self-supervised network trained directly
on the corrupted image can obtain comparable or even better
performance than supervised networks on image denoising.

In summary, our contributions are mainly three-fold:
• We propose a “Noisy-As-Clean” (NAC) strategy for train-

ing self-supervised denoising networks.
• We provide a theoretical background of our NAC strategy,

and implement the DnCNN [41] and ResNet in DIP [23]
into self-supervised networks by our NAC for effective
image denoising.

• Experiments on synthetic and real-world benchmarks
show that, on weak noise, the DnCNN and ResNet in [23]
trained by our NAC achieve comparable or even better
performance than the comparison denoising networks.

The remaining parts of this paper are organized as follows.
In §II, we introduce the related work. In §III, we present the
theoretical background of our NAC strategy for self-supervised
image denoising. In §IV, we implement the DnCNN [41]
and ResNet used in [23] as self-supervised networks by our
NAC. Extensive experiments are conducted in §V demonstrate
that, the DnCNN and ResNet networks trained by our NAC
achieve comparable or even better performance than previous

supervised image denoising networks on benchmark synthetic
and real-world datasets. Conclusion is given in §VI.

II. RELATED WORK

In Table I, we summarize several state-of-the-art super-
vised [14], [41], unsupervised [7], [19], [22] and self-
supervised [3], [20], [23] networks, image priors, and noise
statistics. In this work, to bridge the domain gap problem,
we propose a “Noisy-As-Clean” strategy to learn the image-
specific internal prior and noise statistics directly from the
corrupted test image.
Supervised denoising networks are trained with plenty pairs
of noisy and clean images. This category of networks can
learn external image priors and noise statistics from the
training data. Several methods [26], [30], [41] have been
developed with achieving promising performance on AWGN
noise removal, where the statistics of training and test noise
are similar. However, due to the aforementioned domain gap
problem, the performance of these networks degrade severely
on real-world noisy images [28], [29], [35].
Unsupervised and self-supervised denoising networks are
developed to remove the need on plenty of clean images.
Along this direction, Noise2Noise (N2N) [22] trains the net-
work between pairs of corrupted images with the same scene,
but independently sampled noise. This work is feasible to learn
external image priors and noise statistics from the training
data. However, in real-world scenarios, it is difficult to collect
large amounts of paired images with independent corruption
for training. Noise2Void (N2V) [19] predicts a pixel from its
surroundings by learning blind-spot networks, but it still suf-
fers from the domain gap on image priors between the training
images and test images. This work assumes that the corruption
is zero-mean and independent between pixels. However, as
mentioned in Noise2Self (N2S) [3], N2V [19] significantly
degrades the training efficiency and denoising performance
at test time. Recently, Deep Image Prior (DIP) [23] reveals
that the network structure can resonate with the natural image
priors, and can be utilized in image restoration without external
images. However, it is not practical to select a suitable network
and early-stop its training at right moments for each corrupted
image. Self-supervised denoisers [3], [20] employ explicit
corruption models, and train the networks only with the
corrupted image itself. In this work, we utilize the helpful
noise model to learn self-supervised denoising networks for
real-world image denoising.
Internal and external image priors are widely used for
diverse image restoration tasks [36], [39], [40]. Internal priors
are directly learned from the input test image itself, such as the
multi-scale priors [11], [12], [34], image-specific details [24],
[42], and non-local self similarity [16], [38], [39]. The external
ones are learned on external natural images [37], [40], [43].
Internal priors are adaptive to its image contents, but somewhat
affected by the corruptions [12], [42]. By contrast, the external
priors are effective for restoring images with general contents,
but may not be optimal for specific test image [8], [40], [43].
Noise statistics is of key importance for image denoising.
The AWGN noise is one typical noise with widespread study.
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Fig. 2: Proposed “Noisy-As-Clean” strategy for training self-supervised image denoising networks. In our NAC strategy,
we take the observed noisy image y = x + no as the “clean” target, and take the simulated noisy image z = y + ns as
the input. We do not regard the clean image x as target. After training, the inference is performed on the target noisy image
y = x+ no.

TABLE I: Summary of representative networks for im-
age denoising. S.: Supervised networks. U.: Unsupervised
networks. SS.: Self-supervised networks. Pub.: Publication.
Int.: Internal image priors. Ext.: External image priors. Stat.:
Statistics. The networks with “3” are able to learn the noise
statistics from training data.

Image NoiseType Method Year’Pub. Prior Stat.

S. DnCNN [41] 17’TIP Ext. 3
CBDNet [14] 19’CVPR Ext. 3

U.
Noise2Noise [22] 18’ICML Ext. 3

GAN-CNN [7] 18’CVPR Ext. 3
Noise2Void [19] 19’CVPR Ext.

SS.

Deep Image Prior [23] 18’CVPR Int.
Noise2Self [3] 19’ICML Ext.

Self-Supervised [20] 19’NeurIPS Ext.
Noisy-As-Clean (Ours) 20’TIP Int. 3

Recently, researchers shift more attention to the realistic noise
produced in camera sensors [1], [29], which is usually modeled
as mixed Poisson and Gaussian distribution [13]. The Poisson
component mainly comes from the irregular photons hitting
the sensor [25], while Gaussian noise is majorly produced by
dark current [28]. Though performing well on the synthetic
noise being trained with, supervised denoisers [14], [26], [41]
still suffer from the domain gap problem when processing the
real-world noisy images.

III. THEORETICAL BACKGROUND OF “NOISY-AS-CLEAN”
Training a supervised network fθ (parameterized by θ)

requires many pairs {(yi,xi)} of noisy image yi and clean
image xi, by minimizing an empirical loss function L as∑

i=1

L(fθ(yi),xi). (1)

Assuming that the probability of occurrence for pair (yi,xi)
is p(yi,xi), then statistically we have

θ∗ = argmin
θ

∑
i=1

p(yi,xi)L(fθ(yi),xi)

= argmin
θ

E(y,x)[L(fθ(y),x)],
(2)

where y and x are random variables of noisy and clean images,
respectively. The paired variables (y,x) are dependent, and
their relationship is y = x + no, where no is the random
variable of observed noise. By exploring the dependence of
p(yi,xi) = p(xi)p(yi|xi), Eqn. (2) is equivalent to

θ∗ = argmin
θ

∑
i=1

p(xi)p(yi|xi)L(fθ(yi),xi)

= argmin
θ

Ex[Ey|x[L(fθ(y),x)]].
(3)

This indicates that the network fθ can minimize the loss
function by solving Eqn. (3) separately for each clean image.

Different with the “zero-mean” assumption in [19], [22],
here we study a more practical assumption on noise statistics,
i.e., the expectation E[x] and variance Var[x] of signal intensity
are much stronger than those of noise E[no] and Var[no]
(negligible but not necessarily zero):

E[x]� E[no], Var[x]� Var[no]. (4)

This is actually valid in real-world scenarios, since we can
clearly observe the contents in most real photographs, with
little influence of the noise. The noise therein is often modeled
by zero-mean Gaussian or mixed Poisson and Gaussian (for
realistic noise). Hence, the noisy image y should have similar
expectation with the clean image x:

E[y] = E[x+ no] = E[x] + E[no] ≈ E[x]. (5)

Now we add simulated noise ns to the observed noisy image
y, and generate a new noisy image z = y+ns. We assume that
ns is statisticly close to no, i.e., E[ns] ≈ E[no] and Var[ns] ≈
Var[no]. Then we have

E[z]� E[ns], Var[z]� Var[ns]. (6)

Therefore, the simulated noisy image z has similar expectation
with the observed noisy image y:

E[z] = E[y + ns] ≈ E[y]. (7)

By the Law of Total Expectation [4], we have

Ey[Ez[z|y]] = E[z] ≈ E[y] = Ex[Ey[y|x]]. (8)
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(a) Clean Image
(34.35dB/0.8985)

(b) Corrupted x+ no

(28.00dB/0.6589)
(c) Corrupted x+ no + ns

(31.51dB/0.8225)
(d) DnCNN+NAC in training

(40.23dB/0.9663)
(e) DnCNN+NAC in test

(36.36dB/0.9384)
(f) Denoised (b) by DnCNN [41]

(difference between (c) and (d))
(g) Estimated ns

(difference between (b) and (e))
(h) Estimated no

Fig. 3: An example to illustrate the pipeline of our NAC strategy based image denoising. The image is “Test004” from
the BSD68 dataset. The observed noise no and simulated noise ns are additive white Gaussian noise with σ = 5. (a) The clean
image x. (b) The corrupted image x+no (training target of our DnCNN+NAC). (c) The doubly corrutped image x+no+ns.
(d) The output of training DnCNN in our NAC strategy, with input is the doubly corrupted image (c) and target is the corrupted
image (b). (e) The output of our image-specific DnCNN+NAC tested on (b). (f) The output of DnCNN tested on (b). (g) The
estimated ns is the difference between (c) and (d). (h) The estimated no is the difference between (b) and (e). Note that the
values in images (g) and (h) are amplified by 10 times for better visualization. PSNR and SSIM results of corresponding
images are provided for objective references.

Since the loss function L (usually `2) and the condi-
tional probability density functions p(y|x) and p(z|y) are
all continuous everywhere, the optimal network parameters
θ∗ of Eqn. (3) changes little with the addition of negligible
noise no or ns. With Eqns. (4)-(8), when the x-conditioned
expectation of Ey|x[L(fθ(y),x)] are replaced with the y-
conditioned expectation of Ez|y[L(fθ(z),y)], fθ obtains sim-
ilar y-conditioned optimal parameters θ∗:

argmin
θ

Ey[Ez|y[L(fθ(z),y)]]

≈ argmin
θ

Ex[Ey|x[L(fθ(y),x)]] = θ∗.
(9)

The network fθ minimizes the loss function L for each input
image pair separately, which equals to minimize it on all finite
pairs of images. Through simple manipulations, Eqn. (9) is
equivalent to

argmin
θ

∑
i=1

p(yi)p(zi|yi)L(fθ(zi),yi)

= argmin
θ

Ey[Ez|y[L(fθ(z),y)]] ≈ θ∗.
(10)

By exploring the dependence of p(zi,yi) = p(yi)p(zi|yi),
Eqn. (10) is equivalent to

argmin
θ

E(z,y)[L(fθ(z),y)]

= argmin
θ

∑
i=1

p(zi,yi)L(fθ(zi),yi) ≈ θ∗.
(11)

A simple but useful observation is: as long as the noise
is weak, the optimal parameters of self-supervised network

trained on noisy image pairs {(zi,yi)} are very close to the
optimal parameters of the supervised networks trained on pairs
of noisy and clean images {(yi,xi)}. In Figure 3, we explain
our NAC strategy and illustrate this observation through an
example on the image “Test004” from the BSD68 dataset: The
clean image x in (a) is firstly corrupted by observed AWGN
noise no with σ = 5. Then we add simulated AWGN noise
ns also with σ = 5 to the corrupted image x + no in (b),
and obtain a doubly corrupted image x+no +ns in (c). The
DnCNN [41] with our NAC strategy, named as DnCNN+NAC,
is trained with the doubly corrupted image x+no+ns in (c)
as input and the corrupted image x + no in (b) as target.
The final training output is plotted in (d), with similar PSNR
and SSIM [33] results as the corrupted image x + no in (b).
Then the DnCNN+NAC network learned on (b) and (c) is
directly employed to perform inference on the corrupted image
x + no in (b), and produces the testing output in (e). When
compared to DnCNN [41], our DnCNN+NAC achieves much
higher PSNR and SSIM results on the corrupted image (b).
The estimated simulated noise ns and observed noise no in
training and test stages are plotted in (g) and (h), respectively.
One can see that they are visually in similar noise statistics.

Consistency of noise statistics. Since our contexts are the
real-world scenarios, the noise can be modeled by mixed
Poisson and Gaussian distribution [13]. Fortunately, both the
two distributions are linear additive, i.e., the addition variable
of two Poisson (or Gaussian) distributed variables are still
Poisson (or Gaussian) distributed. Assume that the observed
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(simulated) noise no (ns) follows a mixed x-dependent (y-
dependent) Poisson distribution parameterized by λo (λs) and
Gaussian distribution N (0, σ2

o) (N (0, σ2
s)), i.e.,

no ∼ x� P(λo) +N (0, σ2
o),

ns ∼ y � P(λs) +N (0, σ2
s)

≈ x� P(λs) +N (0, σ2
s),

(12)

where x � P(λo) and y � P (λs) indicates that the noise no
and ns are element-wisely dependent on x and y, respectively.
The “≈” is valid if we assume that the observed noise no is
“weak” when compared to the signal x. To this end, we have

no+ns ∼ x�P(λo+λs)+N (0, σ2
o +σ2

s +2ρσoσs), (13)

where ρ is the correlation between no and ns (ρ = 0 if
they are independent). This indicates that the summed noise
variable no + ns still follows a mixed x dependent Poisson
and Gaussian distribution, guaranteeing the consistency in
noise statistics between the observed realistic noise and the
simulated noise. As will be validated by the experiments (§V),
this property makes our NAC strategy consistently effective on
different noise removal tasks.

IV. LEARNING SELF-SUPERVISED DENOISING NETWORKS
BY “NOISY-AS-CLEAN”

Here, we propose to learn self-supervised denoising net-
works with our “Noisy-As-Clean” (NAC) strategy. We employ
the DnCNN [41] and ResNet in DIP [23] as our baseline,
and call the self-supervised networks as DnCNN+NAC and
ResNet+NAC, respectively. Note that we only need the ob-
served noisy image y to generate noisy image pairs {(z,y)}
with simulated noise ns, as illustrated in Figure 2.
Training self-supervised networks by our NAC. For real-
world images captured by camera sensors, one can hardly
distinguish the realistic noise from the signal. The signal
intensity x is usually stronger than the noise intensity. That
is, the expectation of the observed realistic noise no is usually
much smaller than that of the latent clean image x. If we
train an image-specific network for the new noisy image z
and regard the original noisy image y as the ground-truth
image, then the trained image-specific network basically joint
learn the image-specific prior and noise statistics. It has the
capacity to remove the noise ns from the new noisy image z.
Then if we perform denoising on the original noisy image y,
the observed noise no can be well-removed. Note that we do
not use the clean image x as “ground-truth” in training the
DnCNN+NAC and ResNet+NAC networks.
Training blind denoising networks. Most of existing super-
vised denoising networks train a specific model to process
a fixed noise pattern [5], [26], [28]. To tackle unknown
noise, one feasible solution for these networks is to assume
the noise as AWGN and estimate its noise deviation. The
corresponding noise is removed by using the networks trained
with the estimated level. But this strategy largely degrades
the denoising performance when the noise deviation is not
estimated accurately. Besides, this solution can hardly deal
with realistic noise, which is usually not AWGN, captured
on real photographs. In order to be effective on removing

realistic noise, the self-supervised networks by our NAC
are feasible to blindly remove the unknown noise from real
photographs. Inspired by [14], [41], we propose to train a
blind version of DnCNN+NAC and ResNet+NAC networks
by using the AWGN noise within a range of levels (e.g.,
[0, 55]) for removing unknown AWGN noise. We also train
blind ResNet+NAC with mixed AWGN and Poisson noise
(both within a range of intensities) for removing the realistic
noise. More details will be explained in §V-B.
Testing is performed by directly regarding an observed noisy
image y = x + no as input. We only test the image y once.
The denoised image can be represented as ŷ = fθ∗(y), with
which the objective metrics, e.g., PSNR and SSIM [33], can
be computed with the clean image x.
Implementation details. We employ the DnCNN [41] or
the ResNet (used in DIP [23]) as the backbones, and turn
them into self-supervised networks by our NAC strategy,
which are named as DnCNN+NAC or ResNet+NAC, re-
spectively. The DnCNN contains 17 layers of convolution,
Batch Normalization (BN) [17], and Rectified Linear Units
(ReLU) activation operator [27]. To accommodate DnCNN
with our NAC strategy, we set the output of DnCNN+NAC
as the denoised image, not the residual noise in DnCNN [41].
We observe no difference between the results on PSNR,
SSIM [33], and visual quality by employing these two types
of outputs in our experiments. As DnCNN, the parameters
of DnCNN+NAC are initialized from a pretrained ResNet.
As used in [23], the ResNet in our ResNet+NAC includes
10 residual blocks, each containing two convolutional layers
followed by a BN [17] and a ReLU [27] after the first
BN. The parameters are randomly initialized without being
pretrained. For both baselines, the optimizer is Adam [18]
with default parameters. The learning rate is fixed at 0.001
in all experiments. We use the `2 loss function. For each
test image, we only train the DnCNN+NAC in 100 epochs,
while the original DnCNN is trained with 180 epochs. The
ResNet+NAC is trained in 1000 epochs for each test image,
the same as that in DIP [23]. As suggested by DnCNN [41]
and DIP [23], we employ 4 rotations {0°, 90°, 180°, 270°}
combined with 2 mirror (vertical and horizontal) reflections,
resulting in totally 8 transformations for data augmentation.
We implement the DnCNN+NAC and ResNet+NAC networks
in PyTorch.

V. EXPERIMENTS

In this section, we evaluate the performance of our “Noisy-
As-Clean” (NAC) networks on image denoising. In all experi-
ments, we train a denoising network using only the noisy test
image y as the target, and using the simulated noisy image
z as the input. For all comparison methods, the source codes
or trained models are downloaded from the corresponding au-
thors’ websites. We use the default parameter settings, unless
otherwise specified. The PSNR, SSIM [33], and visual quality
of different methods are used to evaluate the comparison. We
first test with synthetic noise such as additive white Gaussian
noise (AWGN) in §V-A, continue to perform blind image
denoising in §V-B, and finally tackle the realistic noise in
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TABLE II: Average PSNR (dB) and SSIM [33] results of different methods on Set12 dataset corrupted by AWGN noise.
The first, second, and third best results are highlighted in red, blue, and bold, respectively.

Noise Level σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

BM3D [10] 38.07 0.9580 34.40 0.9234 32.38 0.8957 31.00 0.8717 29.97 0.8503
DnCNN [41] 38.76 0.9633 34.78 0.9270 32.86 0.9027 31.45 0.8799 30.43 0.8617

N2N [22] 39.72 0.9665 36.18 0.9446 33.99 0.9149 32.10 0.8788 30.72 0.8446
DIP [23] 32.49 0.9344 31.49 0.9299 29.59 0.8636 27.67 0.8531 25.82 0.7723
N2V [19] 27.06 0.8174 26.79 0.7859 26.12 0.7468 25.89 0.7405 25.01 0.6564

DnCNN+NAC 43.17 0.9817 37.16 0.9336 33.64 0.8697 31.15 0.8024 29.22 0.7382
Blind DnCNN+NAC 43.16 0.9817 37.14 0.9333 33.63 0.8693 31.14 0.8018 29.21 0.7376

ResNet+NAC 39.99 0.9820 36.55 0.9569 34.24 0.9277 32.46 0.8961 31.08 0.8654
Blind ResNet+NAC 38.48 0.9805 36.65 0.9564 34.77 0.9275 33.13 0.9024 31.78 0.8802

TABLE III: Average PSNR (dB) and SSIM [33] results of different methods on BSD68 dataset corrupted by AWGN
noise. The first, second, and third best results are highlighted in red, blue, and bold, respectively.

Noise Level σ = 5 σ = 10 σ = 15 σ = 20 σ = 25
Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

BM3D [10] 37.59 0.9640 33.32 0.9163 31.07 0.8720 29.62 0.8342 28.57 0.8017
DnCNN [41] 38.07 0.9695 33.88 0.9270 31.73 0.8706 30.27 0.8563 29.23 0.8278

N2N [22] 38.58 0.9627 34.07 0.9200 31.81 0.8770 30.14 0.8550 28.67 0.8123
DIP [23] 29.74 0.8435 28.16 0.8310 27.07 0.7867 25.80 0.7205 24.63 0.6680
N2V [19] 26.70 0.7915 26.39 0.7621 25.77 0.7126 25.41 0.6678 24.83 0.6305

DnCNN+NAC 40.21 0.9674 34.21 0.8913 30.72 0.8044 28.25 0.7230 26.34 0.6515
Blind DnCNN+NAC 40.20 0.9674 34.21 0.8911 30.71 0.8041 28.24 0.7227 26.33 0.6511

ResNet+NAC 39.00 0.9707 34.60 0.9324 32.13 0.8942 30.47 0.8636 28.96 0.8185
Blind ResNet+NAC 38.26 0.9605 34.26 0.9266 32.06 0.8919 30.50 0.8609 29.33 0.8327

§V-C. In §V-D, we conduct comprehensive ablation studies to
gain deeper insights into our NAC strategy.

A. Synthetic Noise Removal With Known Noise

We evaluate the DnCNN+NAC and ResNet+NAC networks
on images corrupted by synthetic AWGN noise. More results
on signal dependent Poisson noise and mixed Poisson-AWGN
noise are provided in the Supplementary File.
Training self-supervised networks. Here, we train an image-
specific denoising network using the observed noisy test image
y as the target, and the simulated noisy image z as the input.
Each observed noisy image y = x+no is generated by adding
the observed noise no to the clean image x. The simulated
noisy image z = y + ns is generated by adding simulated
noise ns to observed noisy image y.
Comparison methods. We compare DnCNN+NAC and
ResNet+NAC networks with state-of-the-art image denoising
methods [10], [22], [41]. On AWGN noise, we compare with
BM3D [10], DnCNN [41], Noise2Noise (N2N) [22], Deep
Image Prior (DIP) [23], and Noise2Void (N2V) [19].
Test datasets. We evaluate the comparison methods on the
Set12 and BSD68 datasets, which are widely tested by su-
pervised denoising networks [26], [41] and previous meth-
ods [10], [40]. The Set12 dataset contains 12 images of sizes
512×512 or 256×256, while the BSD68 dataset contains 68
images of different sizes.
Results on AWGN noise with noise levels (standard devi-
ation, or std) of σ ∈ {5, 10, 15, 20, 25} are provided here.
The observed noise no is AWGN with std of σ, while the
simulated noise ns is with the same σ as that of no. The
comparison results are listed in Tables II and III. It can be

seen that, DnCNN+NAC achieves better PSNR and SSIM
results than those of the original DnCNN when σ = 5, 10.
Note that DnCNN are supervised networks trained offline
on the BSD400 dataset, while the variant DnCNN+NAC
network is trained online for each corrupted image. Besides,
the blind version of DnCNN+NAC achieves negligible per-
formance drop when compared to the DnCNN+NAC, which
is consistent with [41]. On the other side, the ResNet+NAC
networks achieve comparable or better performance on PSNR
and SSIM [33] than BM3D [10] and DnCNN [41], especially
when the noise levels are weak (σ = 5, 10). Besides, our
ResNet+NAC networks outperform the other unsupervised and
self-supervised networks such as N2N [22], DIP [23], and
N2V [19] by a large margin on PSNR and SSIM [33]. In
Figures 4 and 5, we provide the visual comparisons of the
denoised images by the competing methods. One can see that
the ResNet+NAC networks produce better image quality and
higher PSNR/SSIM results than the comparison methods.

B. Synthetic Noise Removal With Unknown Noise

To deal with unknown noise, we propose to train blind
versions of the DnCNN [41] and ResNet in [23] by our
NAC strategy. Here, we test the Blind DnCNN+NAC and
Blind ResNet+NAC networks on AWGN noise with unknown
noise deviation. We use the same training strategy, comparison
methods, and test datasets as in §V-A.
Training blind networks. We train the Blind DnCNN+NAC
and Blind ResNet+NAC networks on the corrupted test image
degraded again by AWGN noise with unknown noise levels
(deviations). The noise levels are randomly sampled in Gaus-
sian distribution within [0, 55]. We also test on noise levels in
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TABLE IV: Average PSNR (dB) and SSIM [33] of different methods on the CC dataset [28] and the DND dataset [29].
The best results are highlighted in bold. “NA” means “Not Available” due to unavailable code (GCBD on CC [28]) or difficult
experiments (DIP on DND [29]). The first, second, and third best results are highlighted in red, blue, and bold, respectively.

Type Traditional Methods Supervised Networks Unsupervised Networks Self-supervised NetworksDataset Method CBM3D [9] NI [2] DnCNN+ [41] CBDNet [14] GCBD [7] N2N [22] DIP [23] Blind ResNet+NAC

CC [28] PSNR↑ 35.19 35.33 35.40 36.44 NA 35.32 35.69 36.59
SSIM↑ 0.9063 0.9212 0.9115 0.9460 NA 0.9160 0.9259 0.9502

DND [29] PSNR↑ 34.51 35.11 37.90 38.06 35.58 33.10 NA 36.20
SSIM↑ 0.8507 0.8778 0.9430 0.9421 0.9217 0.8110 NA 0.9252

(a) Noisy (24.59dB/0.4456 (b) BM3D [10] (34.93dB/0.8907) (c) PGPD [40] (34.83dB/0.8850) (d) DnCNN [41] (34.98dB/0.8846)

(e) N2N [22] (35.74dB/0.9019) (f) DIP [23] (30.38dB/0.7145) (g) ResNet+NAC (36.46dB/0.9103) (h) Ground Truth

Fig. 4: Denoised images and PSNR/SSIM results of “House” in Set12 by different methods. The images are corrupted
by AWGN noise with σ = 15. The best results on PSNR and SSIM are highlighted in bold.

uniform distribution and obtain similar results. We repeat the
training of DnCNN+NAC and ResNet+NAC networks on the
test image with different deviations.

Results on blind denoising. For the same test image, we
add to it the AWGN noise whose deviation is also in
{5, 10, 15, 20, 25}. The blindly trained DnCNN+NAC and
ResNet+NAC networks are directly utilized to denoise the
test image without estimating its deviation. The results are
also listed in Tables II and III. We observe that, the Blind
ResNet+NAC networks trained on AWGN noise with unknown
levels can achieve even better PSNR and SSIM [33] results
than the ResNet+NAC networks trained on specific noise lev-
els. Note that on BSD68, the ResNet+NAC networks achieve
higher PSNR and SSIM results than DnCNN [41]. This
demonstrates the effectiveness of our ResNet+NAC networks
on blind image denoising. With the success on blind image,
next we will turn to real-world image denoising, in which the
noise is also unknown and very complex.

C. Practice on Real Photographs

With the promising performance on blind image denoising,
here we tackle the realistic noise for practical applications. The
observed realistic noise no can be roughly modeled as mixed
Poisson noise and AWGN noise [13], [14]. Hence, for each
observed noisy image y, we generate the simulated noise ns
by sampling the y-dependent Poisson part and the independent
AWGN noise.
Training blind ResNet+NAC networks is also performed for
each test image, i.e., the observed noisy image y. In real-world
scenarios, each observed noisy image y is corrupted without
knowing the specific noise statistics of the observed noise no.
Therefore, the simulated noise ns is directly estimated on y
as mixed y-dependent Poisson and AWGN noise. For each
transformation image in data augmentation, the Poisson noise
is randomly sampled with the parameter λ in 0 < λ ≤ 25, and
the AWGN noise is randomly sampled with the noise level σ
in 0 < σ ≤ 25.
Comparison methods. We compare with state-of-the-
art methods on real-world image denoising, including



8

(a) Noisy (34.15dB/0.8416 (b) BM3D [10] (38.20dB/0.9569) (c) PGPD [40] (38.02dB/0.9524) (d) DnCNN [41] (38.64dB/0.9559)

(e) N2N [22] (39.63dB/0.9682) (f) DIP [23] (27.22dB/0.8794) (g) ResNet+NAC (39.89dB/0.9693) (h) Ground Truth

Fig. 5: Denoised images and PSNR/SSIM results of “Test003 ” in BSD68 by different methods. The images are corrupted
by AWGN noise with σ = 5. The best results on PSNR and SSIM are highlighted in bold.

CBM3D [9], the commercial software Neat Image [2], two
supervised networks DnCNN+ [41] and CBDNet [14], and two
unsupervised networks GCBD [7] and Noise2Noise [22], and
the self-supervised network DIP [23]. Note that DnCNN+ [41]
and CBDNet [14] are two state-of-the-art supervised networks
for real-world image denoising, and DnCNN+ is an improved
extension of DnCNN [41] with better performance (the authors
of DnCNN+ provide us the models/results of DnCNN+).

Test datasets. We evaluate the comparison methods on the
Cross-Channel (CC ) dataset [28] and DND dataset [29]. The
CC dataset [28] includes noisy images of 11 static scenes
captured by Canon 5D Mark 3, Nikon D600, and Nikon
D800 cameras. The noisy images are collected under a highly
controlled indoor environment. Each scene is shot 500 times
using the same settings. The average of the 500 shots is
taken as “ground-truth”. We use the default 15 images of
size 512 × 512 cropped by the authors to evaluate different
image denoising methods. The DND dataset [29] contains

50 scenarios captured by Sony A7R, Olympus E-M10, Sony
RX100 IV, and Huawei Nexus 6P. Each scene is cropped to 20
bounding boxes of 512 × 512 pixels, generating totally 1000
test images. The noisy images are collected under higher ISO
values with shorter exposure times, while the “ground truth”
images are captured under lower ISO values with adjusted
longer exposure times. The “ground truth” images are not
released, but we can obtain the PSNR and SSIM results by
submitting the denoised images to the DND ’s Website.

Comparison results on PSNR and SSIM are listed in
Table IV. As can be seen, the ResNet+NAC networks
achieve better performance than all previous denoising meth-
ods, including the CBM3D [9], the supervised networks
DnCNN+ [41] and CBDNet [14], and the unsupervised net-
works GCBD [7], N2N [22], and DIP [23]. This demon-
strates that the ResNet+NAC networks can indeed handle the
complex, unknown, and realistic noise, and achieve better
performance than supervised networks such as DnCNN+ [41]

https://noise.visinf.tu-darmstadt.de/benchmark/#results_srgb
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(a) Ground Truth (b) Noisy (36.25dB/0.9345) (c) CBM3D [9] (36.61dB/0.9669)

(d) NI [2] (37.58dB/0.9600) (e) DnCNN+ [41] (37.16dB/0.9389) (f) CBDNet [14] (36.58dB/0.9613)

(g) N2N [22] (36.99dB/0.9604) (h) DIP [23] (35.99dB/0.9529) (i) Blind ResNet+NAC (37.88dB/0.9729)

Fig. 6: Denoised images and PSNR/SSIM results of “ 5dmark3-iso3200-1” in the Cross-Channel dataset [28] by different
methods. The best results are highlighted in bold.

and CBDNet [14].

Qualitative results. In Figures 6 and 7, we show the denoised
images of our ResNet+NAC and the comparison methods on
the images of “5dmark3-iso3200-1” from the CC dataset [28]
and “0017 3” from the DND dataset [29], respectively. We

observe that our self-supervised Blind ResNet+NAC is very
effective on removing realistic noise from the real photograph.
Besides, the Blind ResNet+NAC networks achieve competitive
PSNR and SSIM results when compared with the other meth-
ods, including the supervised DnCNN+ [41] and CBDNet [14].
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(a) Noisy: 31.46dB/0.9370 (b) CBDNet [14]: 39.34dB/0.9905 (c) CBM3D [9]: 36.26dB/0.9811 (d) GCBD [7]: 37.52dB/0.9765

(e) NI [2]: 37.52dB/0.9868 (f) N2N [22]: 34.95dB/0.9621 (g) DnCNN+ [41]: 38.25dB/0.9888 (h) Blind ResNet+NAC: 38.34dB/0.9887

Fig. 7: Denoised images and PSNR(dB)/SSIM by comparison methods on “0017 3” in DND [29]. The “ground-truth”
image is not released, but PSNR(dB)/SSIM results are publicly provided on DND Benchmark.

Speed. The work most similar to ours is Deep Image Prior
(DIP) [23], which also trains an image-specific network for
each test image. Averagely, DIP needs 603.9 seconds to
process a 512× 512 color image, on which our ResNet+NAC
network needs 583.2 seconds (on an NVIDIA Titan X GPU).

D. Ablation Study
To further study our NAC strategy, we conduct more ex-

amination of our ResNet+NAC networks on image denoising.
Specifically, we assess 1) differences of the ResNet+NAC from
the ResNet in DIP [23]; 2) how the number of residual blocks
and epochs influence the ResNet+NAC; 3) comparison with
the “Oracle” performance of the ResNet+NAC networks; 4)
performance of the ResNet+NAC on “strong” noise.
1) Differences from DIP [23]. Though the basic network in
our work is the ResNet used in DIP [23], our ResNet+NAC
network is essentially different from DIP on at least two
aspects. First, our ResNet+NAC is a novel strategy for self-
supervised learning of adaptive network parameters for the
degraded image, while DIP aims to investigate adaptive net-
work structure without learning the parameters. Second, our
ResNet+NAC learns a mapping from the synthetic noisy image
z = y + ns to the noisy image y, which approximates the
mapping from the noisy image y = x+no to the clean image
x. But DIP maps a random noise map to the noisy image
y, and the denoised image is obtained during the process.
Due to the two reasons, DIP needs early stop for different
images, while our ResNet+NAC achieves more robust (and
better) denoising performance than DIP on diverse images. In

Figure 8, we plot the curves of training loss and test PSNR
of DIP (a) and ResNet+NAC (b) networks in 10,000 epochs,
on two images of “Cameraman” and “House”. We observe
that DIP needs early stop to select the best results, while
our ResNet+NAC can stably achieve better denoising results
within 1000 epochs.
2) Influence on the number of residual blocks and epochs.
Our backbone network is the ResNet [23] with 10 residual
blocks trained in 1000 epochs. Now we study how the number
of residual blocks and epochs influence the performance
of ResNet+NAC on image denoising. The experiments are
performed on the Set12 dataset corrupted by AWGN noise
(σ = 15). From Table V, we observe that, with more residual
blocks, the ResNet+NAC networks can achieve better PSNR
and SSIM [33] results. And 10 residual blocks are enough
to achieve satisfactory results. With more (e.g., 15) blocks,
there is little improvement on PSRN and SSIM. Hence, we use
10 residual blocks the same as [23]. Then we study how the
number of epochs influence the performance of ResNet+NAC
on image denoising. From Table VI, one can see that on the
Set12 dataset corrupted by AWGN noise (σ = 15), with more
training epochs, our ResNet+NAC networks achieve better
PSNR and SSIM results, but with longer processing time.
3) Comparison with Oracle. We also study the “Oracle”
performance of the ResNet+NAC networks. Roughly speaking,
“Oracle” performance means the best performance a model
can achieve (in our case, on image denoising trained only
with the test image). In “Oracle”, we train the ResNet+NAC
networks on the pair of observed noisy image y and its clean

https://noise.visinf.tu-darmstadt.de/benchmark/#results_srgb
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Fig. 8: Training loss and PSNR (dB) curves of DIP [23] (a) and our ResNet+NAC (b) networks w.r.t. the number of epochs,
on the images of “Cameraman” and “House” from Set12.
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Fig. 9: Comparisons of PSNR (dB) and SSIM results on Set12 (a) by our ResNet+NAC and its “Oracle” version for AWGN
with σ = 5, 10, 15, 20, 25 and (b) by BM3D [10], DnCNN [41], and our ResNet+NAC for strong AWGN (σ = 50).

TABLE V: Average PSNR (dB)/SSIM of ResNet+NAC with
different number of blocks on Set12 corrupted by AWGN
noise (σ = 15).

# of Blocks 1 2 5 10 15
PSNR↑ 33.58 33.85 34.14 34.24 34.26
SSIM↑ 0.9161 0.9226 0.9272 0.9277 0.9272

image x corrupted by AWGN noise or signal dependent Pois-
son noise. The experiments are performed on Set12 dataset
corrupted by AWGN or signal dependent Poisson noise. The
noise deviations are in {5, 10, 15, 20, 25}. Figure 9 (a) shows
comparisons of our ResNet+NAC and its “Oracle” networks
on PSNR and SSIM. It can be seen that, the “Oracle” networks
trained on the pair of noisy-clean images only perform slightly
better than the original ResNet+NAC networks trained with
the simulated -observed noisy image pairs (z,y). With our
NAC strategy, the ResNet networks trained only with noisy
test image achieves promising performance on weak noise.
4) Performance on strong noise. Our NAC strategy is based
on the assumption of “weak noise”. It is natural to wonder how
well ResNet+NAC performs against strong noise. To answer
this question, we compare the ResNet+NAC networks with

TABLE VI: Average PSNR (dB) and time (seconds) of
ResNet+NAC with different number of epochs on Set12
corrupted by AWGN noise (σ = 15).

# of Epochs 100 200 500 1000 5000
PSNR↑ 31.80 32.79 33.77 34.24 34.28
SSIM↑ 0.8714 0.9023 0.9189 0.9277 0.9280
Time↓ 67.4 132.5 302.0 583.2 2815.6

BM3D [10] and DnCNN [41], on Set12 corrupted by AWGN
noise with σ = 50. The PSNR and SSIM results are plotted
in Figure 9 (b). One can see that, our ResNet+NAC networks
are limited in handling strong AWGN noise, when compared
with BM3D [10] and DnCNN [41]. To study how the strong
noise limits the performance of our NAC strategy, we perform
experiments on the Set12 dataset with various noise levels
of σ = 30, 40, 50, and provide more PSNR/SSIM results in
Table VII. As can be seen, the performance gap between our
ResNet+NAC and DnCNN becomes larger when the noise
level σ is stronger. That is, our ResNet+NAC is effective
on “weak” noise and will degrade heavily when the noise
becomes stronger.
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TABLE VII: Average PSNR (dB) and SSIM [33] results of BM3D [10], DnCNN [41] and our ResNet+NAC on the Set12
dataset corrupted by AWGN noise with σ = 30, 40, 50.

Noise Level σ = 30 σ = 40 σ = 50
Metric PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

BM3D [10] 29.14 0.8320 27.65 0.7944 26.72 0.7676
DnCNN [41] 29.52 0.8420 28.18 0.8094 27.18 0.7827

ResNet+NAC 29.91 0.8316 28.05 0.7722 24.69 0.6680

VI. CONCLUSION

In this work, we proposed a “Noisy-As-Clean” (NAC) strat-
egy for learning self-supervised image denoising networks. In
our NAC, we trained an image-specific network by taking the
corrupted image as the target, and adding to it the simulated
noise to generate the doubly corrupted noisy input. The
simulated noise is close to the observed noise in the noisy
test image. This strategy can be seamlessly embedded into
existing supervised denoising networks. We observed that it
is possible to learn a self-supervised network only with the
corrupted image, approximating the optimal parameters of a
supervised network learned with a pair of noisy and clean
images. Extensive experiments on synthetic and real-world
benchmarks demonstrate that, the DnCNN [41] and ResNet
(in Deep Image Prior [23]) trained with our NAC strategy
achieved comparable or better performance on PSNR, SSIM,
and visual quality, when compared to previous state-of-the-
art image denoising methods, including supervised denoising
networks. These results validate that our NAC strategy can
learn effective image-specific priors and noise statistics only
from the corrupted test image. As a potential future work, we
will apply our NAC strategy on noisy document text images,
since it is difficult to obtain their clean counterparts.

REFERENCES

[1] A. Abdelhamed, S. Lin, and M. S. Brown. A high-quality denoising
dataset for smartphone cameras. In IEEE Conf. Comput. Vis. Pattern
Recog., June 2018. 2, 3

[2] N. ABSoft. Neat Image. https://ni.neatvideo.com/home. 7, 8, 9, 10
[3] J. Batson and L. Royer. Noise2Self: Blind denoising by self-supervision.

In Int. Conf. Mach. Learn., volume 97, pages 524–533. PMLR, 2019.
1, 2, 3

[4] P. Billingsley. Probability and Measure. Wiley Series in Probability and
Statistics. Wiley, 1995. 3

[5] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron.
Unprocessing images for learned raw denoising. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 9446–9454, 2019. 5

[6] H. C. Burger, C. J. Schuler, and S. Harmeling. Image denoising: Can
plain neural networks compete with BM3D? In IEEE Conf. Comput.
Vis. Pattern Recog., pages 2392–2399, 2012. 1

[7] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denoising with
generative adversarial network based noise modeling. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 3155–3164, 2018. 1, 2, 3, 7, 8, 10

[8] Y. Chen and T. Pock. Trainable nonlinear reaction diffusion: A flexible
framework for fast and effective image restoration. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1256–1272, 2017.
2

[9] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color image
denoising via sparse 3D collaborative filtering with grouping constraint
in luminance-chrominance space. In ICIP, pages 313–316. IEEE, 2007.
7, 8, 9, 10

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3-D transform-domain collaborative filtering. IEEE Transactions
on Image Processing, 16(8):2080–2095, 2007. 6, 7, 8, 11, 12

[11] Y. Du, J. Xu, X. Zhen, M.-M. Cheng, and L. Shao. Conditional
variational image deraining. IEEE Transactions on Image Processing,
29:6288–6301, 2020. 2

[12] M. Elad and M. Aharon. Image denoising via sparse and redundant
representations over learned dictionaries. IEEE Transactions on Image
Processing, 15(12):3736–3745, 2006. 2

[13] A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian. Practical
poissonian-gaussian noise modeling and fitting for single-image raw-
data. IEEE Transactions on Image Processing, 17(10):1737–1754, Oct
2008. 3, 4, 7

[14] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang. Toward convolutional
blind denoising of real photographs. In IEEE Conf. Comput. Vis. Pattern
Recog., 2019. 2, 3, 5, 7, 8, 9, 10

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In IEEE Conf. Comput. Vis. Pattern Recog., pages 770–778,
2016. 1, 2

[16] Y. Hou, J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao. Nlh: A
blind pixel-level non-local method for real-world image denoising. IEEE
Transactions on Image Processing, 20(1):5121–5135, 2020. 2

[17] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Int. Conf. Mach. Learn.,
2015. 5

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
In Int. Conf. Learn. Represent., 2015. 5

[19] A. Krull, T.-O. Buchholz, and F. Jug. Noise2Void-learning denoising
from single noisy images. In IEEE Conf. Comput. Vis. Pattern Recog.,
2019. 1, 2, 3, 6

[20] S. Laine, T. Karras, J. Lehtinen, and T. Aila. High-quality self-supervised
deep image denoising. In Adv. Neural Inform. Process. Syst., 2019. 1,
2, 3

[21] S. Lefkimmiatis. Non-local color image denoising with convolutional
neural networks. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3587–3596, 2017. 1

[22] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala,
and T. Aila. Noise2Noise: Learning image restoration without clean
data. In Int. Conf. Mach. Learn., pages 2971–2980, 2018. 1, 2, 3, 6, 7,
8, 9, 10

[23] V. Lempitsky, D. U. Andrea Vedaldi, and V. Lempitsky. Deep image
prior. In IEEE Conf. Comput. Vis. Pattern Recog., pages 9446–9454,
2018. 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12

[24] Z. Liang, J. Xu, D. Zhang, Z. Cao, and L. Zhang. A hybrid l1-l0 layer
decomposition model for tone mapping. In IEEE Conf. Comput. Vis.
Pattern Recog., June 2018. 2

[25] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation
from a single image. In IEEE Conf. Comput. Vis. Pattern Recog., pages
901–908. IEEE, 2006. 3

[26] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang. Non-local recurrent
network for image restoration. In Adv. Neural Inform. Process. Syst.,
pages 1673–1682, 2018. 2, 3, 5, 6

[27] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Int. Conf. Mach. Learn., pages 807–814, 2010.
5

[28] S. Nam, Y. Hwang, Y. Matsushita, and S. J. Kim. A holistic approach
to cross-channel image noise modeling and its application to image
denoising. IEEE Conf. Comput. Vis. Pattern Recog., pages 1683–1691,
2016. 1, 2, 3, 5, 7, 8, 9
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