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Abstract

Recent advances on CNNs are mostly devoted to design-
ing more complex architectures to enhance their represen-
tation learning capacity. In this paper, we consider improv-
ing the basic convolutional feature transformation process
of CNNs without tuning the model architectures. To this
end, we present a novel self-calibrated convolution that ex-
plicitly expands fields-of-view of each convolutional layer
through internal communications and hence enriches the
output features. In particular, unlike the standard convolu-
tions that fuse spatial and channel-wise information using
small kernels (e.g., 3 × 3), our self-calibrated convolution
adaptively builds long-range spatial and inter-channel de-
pendencies around each spatial location through a novel
self-calibration operation. Thus, it can help CNNs generate
more discriminative representations by explicitly incorpo-
rating richer information. Our self-calibrated convolution
design is simple and generic, and can be easily applied to
augment standard convolutional layers without introducing
extra parameters and complexity. Extensive experiments
demonstrate that when applying our self-calibrated convo-
lution into different backbones, the baseline models can be
significantly improved in a variety of vision tasks, includ-
ing image recognition, object detection, instance segmen-
tation, and keypoint detection, with no need to change net-
work architectures. We hope this work could provide future
research with a promising way of designing novel convo-
lutional feature transformation for improving convolutional
networks. Code is available on the project page.

1. Introduction

Deep neural networks trained on large-scale image clas-
sification datasets (e.g., ImageNet [30]) are usually adopted
as backbones to extract strong representative features for
down-stream tasks, such as object detection [23, 29, 2, 8],
segmentation [45, 11], and human keypoint detection [11,
39]. A good classification network often has strong feature
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Figure 1. Visualizations of feature activation maps learned by dif-
ferent networks through Grad-CAM [31]. All the networks are
trained on ImageNet [30]. Our results are obtained from ResNet-
50 with the proposed self-calibrated convolution. From the ac-
tivation maps, one can observe residual networks [12, 40] with
conventional (grouped) convolutions and even SE blocks [16] fail
to capture the whole discriminative regions, due to limited re-
ceptive fields of their convolution layers. In contrast, calibrated-
convolutions help our model well capture the whole discriminative
regions.

transformation capability and therefore provides powerful
representations to benefit down-stream tasks [20, 10, 27].
Hence, it is highly desired to enhance the feature transfor-
mation capability of convolutional networks.

In the literature, an effective way to generate rich rep-
resentations is using powerful hand-designed network ar-
chitectures, such as residual networks (ResNets) [12] as
well as their diverse variants [40, 43, 34, 7] or design-
ing networks based on AutoML techniques [47, 26]. Re-
cently, some methods attempt to do so by incorporating
either attention mechanisms [38, 48, 16, 15] or non-local
blocks [37, 3] into mature networks to model the interde-
pendencies among spatial locations or channels or both.
The common idea behind the above methods is focused on
adjusting the network architectures for producing rich fea-



ture representations, which needs too much human labors.
In this paper, rather than designing complex network

architectures to strengthen feature representations, we in-
troduce self-calibrated convolution as an efficient way to
help convolutional networks learn discriminative represen-
tations by augmenting the basic convolutional transforma-
tion per layer. Similar to grouped convolutions, it separates
the convolutional filters of a specific layer into multiple por-
tions but unevenly, the filters within each portion are lever-
aged in a heterogeneous way. Specifically, instead of per-
forming all the convolutions over the input in the original
space homogeneously, Self-calibrated convolutions trans-
form the inputs to low-dimensional embeddings through
down-sampling at first. The low-dimensional embeddings
transformed by one filter portion are adopted to calibrate
the convolutional transformations of the filters within an-
other portion. Benefiting from such heterogeneous convolu-
tions and between-filter communication, the receptive field
for each spatial location can be effectively enlarged.

As an augmented version of the standard convolution,
our self-calibrated convolution offers two advantages. First,
it enables each spatial location to adaptively encode infor-
mative context from a long-range region, breaking the tradi-
tion of convolution operating within small regions (e.g., 3×
3). This makes the feature representations produced by
our self-calibrated convolution more discriminative. In Fig-
ure 1, we visualize the feature activation maps produced
by ResNets with different types of convolutions [12, 40].
As can be seen, ResNet with self-calibrated convolutions
can more accurately and integrally locate the target objects.
Second, the proposed self-calibrated convolution is generic
and can be easily applied to standard convolutional layers
without introducing any parameters and complexity over-
head or changing the hyper-parameters.

To demonstrate the effectiveness of the proposed self-
calibrated convolution, we first apply it to the large-scale
image classification problem. We take the residual net-
work [12] and its variants [40, 16] as baselines, which
get large improvements in top-1 accuracy with comparable
model parameters and computational capacity. In addition
to image classification, we also conduct extensive experi-
ments to demonstrate the generalization capability of the
proposed self-calibrated convolution in several vision appli-
cations, including object detection, instance segmentation,
and keypoint detection. Experiments show that the base-
line results can be greatly improved by using the proposed
self-calibrated convolutions for all three tasks.

2. Related Work

In this section, we briefly review the recent representa-
tive work on architecture design and long-range dependency
building of convolutional networks.

Architecture Design: In recent years, remarkable progress
has been made in the field of novel architecture design [33,
35, 32, 44]. As an early work, VGGNet [33] builds deeper
networks using convolutional filters with smaller kernel size
(3 × 3) compared to AlexNet [19], yielding better perfor-
mance while using fewer parameters. ResNets [12, 13] im-
prove the sequential structure by introducing residual con-
nections and using batch normalization [18], making it pos-
sible to build very deep networks. ResNeXt [40] and Wide
ResNet [43] extend ResNet by grouping 3×3 convolutional
layers or increasing their widths. GoogLeNet [35] and In-
ceptions [36, 34] utilize carefully designed Inception mod-
ules with multiple parallel paths of sets of specialized filters
(3×3, etc.) for feature transformations. NASNet [48] learns
to construct model architectures by exploring a predefined
search space, enabling transferability. DenseNet [17] and
DLA [42] aggregate features through complicated bottom-
up skip connections. Dual Path Networks (DPNs) [7] ex-
ploit both residual and dense connections to build strong
feature representations. SENet [16] introduces a squeeze-
and-excitation operation to explicitly model the interdepen-
dencies between channels.

Long-Range Dependency Modeling: Building long-range
dependencies is helpful in most computer vision tasks.
One of the successful examples is the SENet [16], which
adopts Squeeze-and-Excitation blocks to build interdepen-
dencies among the channel dimensions. Later work, like
GENet [15], CBAM [38], GCNet [3], GALA [25], AA [1],
and NLNet [37] further extend this idea by introducing spa-
tial attention mechanisms or designing advanced attention
blocks. Another way to model long-range dependency is
to exploit spatial pooling or convolutional operators with
large kernel windows. Some typical examples like PSPNet
[45] adopt multiple spatial pooling operators with different
sizes to capture multi-scale context. There are also many
work [28, 14, 41, 5, 22] that leverage large convolutional
kernels or dilated convolutions for long-range context ag-
gregation. Our work is also different from Octave convo-
lution [6], which aims at reducing spatial redundancy and
computation cost.

Different from all above-mentioned approaches that fo-
cus on tuning network architectures or adding additional
hand-designed blocks to improve convolutional networks,
our approach considers more efficiently exploiting the con-
volutional filters in convolutional layers and designing pow-
erful feature transformations to generate more expressive
feature representations.

3. Method

A conventional 2D convolutional layer F is associated
with a group of filter sets K = [k1,k2, . . . ,kĈ ], where ki

denotes the i-th set of filters with size C, and transforms
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Figure 2. Schematic illustration of the proposed self-calibrated convolutions. As can be seen, in self-calibrated convolutions, the original
filters are separated into four portions, each of which is in charge of a different functionality. This makes self-calibrated convolutions
quiet different from traditional convolutions or grouped convolutions that are performed in a homogeneous way. More details about the
self-calibration operation can be found in Sec. 3.1.

an input X = [x1,x2, . . . ,xC ] ∈ RC×H×W to an output
Y = [y1,y2, . . . ,yĈ ] ∈ RĈ×Ĥ×Ŵ . Note that we omit
the spatial size of the filters and the bias term for notational
convenience. Given the above notations, the output feature
map at channel i can be written as

yi = ki ∗X =

C∑
j=1

kj
i ∗ xj , (1)

where ‘*’ denotes convolution and ki = [k1
i ,k

2
i , . . . ,k

C
i ].

As can be seen above, each output feature map is com-
puted by summation through all channels and all of them
are produced uniformly by repeating Eqn. 1 multiple times.
In this way, the convolutional filters can learn similar pat-
terns. Moreover, the fields-of-view for each spatial loca-
tion in the convolutional feature transformation is mainly
controlled by the predefined kernel size and networks com-
posed of a stack of such convolutional layers are also short
of large receptive fields to capture enough high-level seman-
tics [46, 45]. Both above shortcomings may lead to feature
maps that are less discriminative. To alleviate the above is-
sues, we propose self-calibrated convolution, which is elab-
orated below.

3.1. Self-Calibrated Convolutions

In grouped convolutions, the feature transformation pro-
cess is homogeneously and individually performed in mul-
tiple parallel branches and the outputs from each branch are
concatenated as the final output. Similar to grouped convo-
lutions, the proposed self-calibrated convolutions also split
the learnable convolutional filters into multiple portions, yet
differently, each portion of filters is not equally treated but
responsible for a special functionality.

3.1.1 Overview

The workflow of the proposed design is illustrated in Fig-
ure 2. In our approach, we consider a simple case where the

input channel number C is identical to the output channel
number Ĉ, i.e., Ĉ = C. Thus, in the following, we use C
to replace Ĉ for notational convenience. Given a group of
filter sets K with shape (C,C, kh, kw) where kh and kw are
respectively the spatial height and width, we first uniformly
separate it into four portions, each of which is in charge of a
different functionality. Without loss of generality, suppose
C can be divided by 2. After separation, we have four por-
tions of filters denoted by {Ki}4i=1, each of which is with
shape (C2 ,

C
2 , kh, kw), respectively.

Given the four portions of filters, we then uniformly split
the input X into two portions {X1,X2}, each of which
is then sent into a special pathway for collecting different
types of contextual information. In the first pathway, we uti-
lize {K1,K2,K3} to perform the self-calibration operation
upon X1, yielding Y1. In the second pathway, we perform
a simple convolution operation: Y2 = F1(X2) = X2 ∗K1,
which targets at retaining the original spatial context. Both
the intermediate outputs {Y1,Y2} are then concatenated
together as the output Y. In what follows, we detailedly de-
scribe how to perform the self-calibration operation in the
first pathway.

3.1.2 Self-Calibration

To efficiently and effectively gather informative contextual
information for each spatial location, we propose to conduct
convolutional feature transformation in two different scale
spaces: an original scale space in which feature maps share
the same resolution with the input and a small latent space
after down-sampling. The embeddings after transformation
in the small latent space are used as references to guide the
feature transformation process in the original feature space
because of their large fields-of-view.

Self-Calibration: Given the input X1, we adopt the aver-
age pooling with filter size r × r and stride r as follows:

T1 = AvgPoolr(X1). (2)
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Figure 3. Visual comparisons of the intermediate feature maps pro-
duced by different settings of ResNet-50. The feature maps are
selected from the 3 × 3 convolutional layer in the last building
block. For the top row, we use the traditional convolutions while
for the bottom row, we use the proposed self-calibrated convolu-
tions (SC-Conv). It is obvious that ResNet-50 with self-calibrated
convolutions can capture richer context information.

Feature transformations on T1 is performed based on K2:

X′1 = Up(F2(T1)) = Up(T1 ∗K2), (3)

where Up(·) is a bilinear interpolation operator that maps
the intermediate references from the small scale space to
the original feature space. Now, the calibration operation
can be formulated as follows:

Y′1 = F3(X1) · σ(X1 +X′1), (4)

whereF3(X1) = X1∗K3, σ is the sigmoid function, and ‘·’
denotes element-wise multiplication. As shown in Eqn. 4,
we use X′1 as residuals to form the weights for calibration,
which is found beneficial. The final output after calibration
can be written as follows:

Y1 = F4(Y
′
1) = Y′1 ∗K4. (5)

Advantages: The advantages of the proposed self-
calibration operation are three-fold. First of all, compared
to conventional convolutions, by employing the calibration
operation as shown in Eqn. 4, each spatial location is al-
lowed to not only adaptively consider its surrounding infor-
mative context as embeddings from the latent space func-
tioning as scalars in the responses from the original scale
space, but also model inter-channel dependencies. Thus, the
fields-of-view for convolutional layer with self-calibration
can be effectively enlarged. As shown in Figure 3, convolu-
tional layers with self-calibration encode larger but more ac-
curate discriminative regions. Second, instead of collecting
global context, the self-calibration operation only consid-
ers the context around each spatial location, avoiding some
contaminating information from irrelevant regions to some
extent. As can be seen in the right two columns of Figure 6,
convolutions with self-calibration can accurately locate the
target objects when visualizing the final score layer. Third,

the self-calibration operation encodes multi-scale informa-
tion, which is highly desired by object detection related
tasks. We will give more experimental analysis in Sec. 4.

3.2. Instantiations

To demonstrate the performance of the proposed self-
calibrated convolutions, we take several variants of the
residual networks [12, 40, 16] as exemplars. Both 50- and
101-layer bottleneck structures are considered. For sim-
plicity, we only replace the convolutional operation in the
3 × 3 convolutional layer in each building block with our
self-calibrated convolutions and keep all relevant hyper-
parameters unchanged. By default, the down-sampling rate
r in self-calibrated convolutions is set to 4.

Relation to Grouped Convolutions: Grouped convolu-
tions adopt the split-transform-merge strategy, in which in-
dividual convolutional transformations are conducted ho-
mogeneously in multiple parallel branches [40] or in a hier-
archical way [9]. Unlike grouped convolutions, our self-
calibrated convolutions can exploit different portions of
convolutional filters in a heterogeneous way. Thus, each
spatial location during transformation can fuse information
from two different spatial scale spaces through the self-
calibration operation, which largely increases the fields-of-
view when applied to convolutional layers and hence results
in more discriminative feature representations.

Relation to Attention-Based Modules: Our work is also
quiet different from the existing methods relying on add-on
attention blocks, such as the SE block [16], GE [15] block,
or the CBAM [38]. Those methods require additional learn-
able parameters, while our self-calibrated convolutions in-
ternally change the way of exploiting convolutional filters of
convolutional layers, and hence require no additional learn-
able parameters. Moreover, though the GE block [15] en-
codes spatial information in a lower-dimension space as we
do, it does not explicitly preserve the spatial information
from the original scale space. In the following experiment
section, we will show without any extra learnable param-
eters, our self-calibrated convolutions can yield significant
improvements over baselines and other attention-based ap-
proaches on image classification. Furthermore, our self-
calibrated convolutions are complementary to attention and
thus can also benefit from the add-on attention modules.

4. Experiments
4.1. Implementation Details

We implement our approach using the publicly available
PyTorch framework1. For fair comparison, we adopt the
official classification framework to perform all classifica-
tion experiments unless specially declared. We report re-

1https://pytorch.org



Network Params MAdds FLOPs Top-1 Top-5
50-layer
ResNet [12] 25.6M 4.1G 8.2G 76.4 93.0
SCNet 25.6M 4.0G 7.9G 77.8 93.9
ResNeXt [40] 25.0M 4.3G 8.5G 77.4 93.4
ResNeXt 2x40d 25.4M 4.2G 8.3G 76.8 93.3
SCNeXt 25.0M 4.3G 8.5G 78.3 94.0
SE-ResNet[16] 28.1M 4.1G 8.2G 77.2 93.4
SE-SCNet 28.1M 4.0G 7.9G 78.2 93.9
101-layer
ResNet [12] 44.5M 7.8G 15.7G 78.0 93.9
SCNet 44.6M 7.2G 14.4G 78.9 94.3
ResNeXt [40] 44.2M 8.0G 16.0G 78.5 94.2
SCNeXt 44.2M 8.0G 15.9G 79.2 94.4
SE-ResNet[16] 49.3M 7.9G 15.7G 78.4 94.2
SE-SCNet 49.3M 7.2G 14.4G 78.9 94.3

Table 1. Comparisons on ImageNet-1K dataset when the proposed
structure is utilized in different classification frameworks. We re-
port single-crop accuracy rates (%).

sults on the ImageNet dataset [30]. The size of input im-
ages is 224×224 which are randomly cropped from resized
images as done in [40]. We use SGD to optimize all mod-
els. The weight decay and momentum are set to 0.0001 and
0.9, respectively. Four Tesla V100 GPUs are used and the
mini-batch size is set to 256 (64 per GPU). By default, we
train all models for 100 epochs with an initial learning rate
0.1, which is divided by 10 after every 30 epochs. In test-
ing, we report the accuracy results on the single 224 × 224
center crop from an image with shorter side resized to 256
as in [40]. Note that models in all ablation comparisons
share the same running environment and hyper-parameters
except for the network structures themselves. All models in
Table 1 are trained under the same strategy and tested under
the same settings.

4.2. Results on ImageNet

We conduct ablation experiments to verify the impor-
tance of each component in our proposed architecture and
compare with existing attention-based approaches on the
ImageNet-1K classification dataset [30].

4.2.1 Ablation Analysis

Generalization Ability: To demonstrate the generaliza-
tion ability of the proposed structure, we consider three
widely used classification architectures as baselines, includ-
ing ResNet [12], ResNeXt [40], and SE-ResNet [16]. The
corresponding networks with self-calibrated convolutions
are named as SCNet, SCNeXt, and SE-SCNet, respectively.
Following the default version of ResNeXt [40] (32 × 4d),
we set the bottleneck width to 4 in SCNeXt. We also ad-
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Figure 4. Visualizations of feature maps from the side outputs at
res3 of different networks (ResNet v.s. SCNet). We use 50-layer
settings for both networks.

just the cardinality of each group convolution according to
our structure to ensure that the capacity of SCNeXt is close
to ResNeXt. For SE-SCNet, we apply the SE module to
SCNet in the same way as [16].

In Table 1, we show the results produced by both 50-
and 101-layer versions of each model. Compared to the
original ResNet-50 architecture, SCNet-50 has an improve-
ment of 1.4% in accuracy (77.8% vs. 76.4%). More-
over, the improvement by SCNet-50 (1.4%) is also higher
than that by ResNeXt-50 (1.0%) and SE-ResNet-50 (0.8%).
This demonstrates that self-calibrated convolutions perform
much better than increasing cardinality or introducing the
SE module [16]. When the networks go deeper, a similar
phenomenon can also be observed.

Another way to investigate the generalization ability of
the proposed structure is to see its behaviors on other vision
tasks as backbones, such as object detection and instance
segmentation. We will give more experiment comparisons
in the next subsection.

Self-Calibrated Convolution v.s. Vanilla Convolution:
To further investigate the effectiveness of the proposed self-
calibrated convolutions compared to the vanilla convolu-
tions, we add side supervisions (auxiliary losses) as done
in [21] to both ResNet-50 and SCNet-50 after one inter-
mediate stage, namely res3. Results from side outputs
can reflect how a network performs when the depth varies
and how strong the feature representations at different lev-
els are. The top-1 accuracy results from the side supervision
at res3 have been depicted in Figure 5. It is obvious that
the side results from SCNet-50 are much better than those
from ResNet-50. This phenomenon indirectly indicates that
networks with the proposed self-calibrated convolutions can
generate richer and more discriminative feature representa-
tions than the vanilla convolutions. To further demonstrate
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Figure 5. Auxiliary loss curves for both ResNet-50 and SCNet-50.
We add auxiliary loss after res3. As can be seen, SCNet (red
lines) works much better than ResNet (cyan lines). This demon-
strates that self-calibrated convolutions work better for networks
with lower depth.

this, we show some visualizations from the score layers of
the side outputs in Figure 4. Apparently, SCNet can more
precisely and integrally locate the target objects even at a
lower depth of the network. In Sec. 4.3, we will give more
demonstrations on this by applying both convolutions to dif-
ferent vision tasks.

Attention Comparisons: To show why the proposed self-
calibrated convolution is helpful for classification networks,
we adopt the Grad-CAM [31] as an attention extraction
tool to visualize the attentions produced by ResNet-50,
ResNeXt-50, SE-ResNet-50, and SCNet-50, as shown in
Figure 6. It can be clearly seen that the attentions produced
by SCNet-50 can more precisely locate the target objects
and do not expand to the background areas too much. When
the target objects are small, the attentions by our network
are also better confined to the semantic regions compared
to those produced by other three networks. This suggests
that our self-calibrated convolution is helpful for discover-
ing more integral target objects even though their sizes are
small.

Design Choices: As demonstrated in Sec. 3.1, we in-
troduce the down-sampling operation to achieve self-
calibration, which has been proven useful for improving
CNNs. Here, we investigate how the down-sampling rate
in self-calibrated convolutions influences the classification
performance. In Table 2, we show the performance with
different down-sampling rates used in self-calibrated con-
volutions. As can be seen, when no down-sampling oper-
ation is adopted (r = 1), the result is already much bet-
ter than the original ResNet-50 (77.38% v.s. 76.40%). As
the down-sampling rate increases, better performance can
be achieved. Specially, when the down-sampling rate is set
to 4, we have a top-1 accuracy of 77.81%. Note that we do
not use larger down-sampling rates as the resolution of the
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Figure 6. Visualization of attention maps generated by Grad-CAM
[31]. It is obvious that our SCNet can more precisely locate the
foreground objects than other networks no matter how large and
what shape they are. This heavily relies on our self-calibration
operation which benefits adaptively capturing rich context infor-
mation. We use 50-layer settings for all networks.

last residual blocks is already very small (e.g., 7× 7). Fur-
thermore, we find taking the feature maps at lower resolu-
tion (after F2) as residuals by adding an identity connection
as shown in Figure 2 is also helpful for better performance.
Discarding the extra identity connection leads to a decrease
of performance to 77.48%.

Average Pooling vs. Max Pooling: In addition to the above
design choices, we also investigate the influence of different
pooling types on the performance. In our experiments, we
attempt to replace all the average pooling operators in self-
calibrated convolutions with the max pooling operators and
see the performance difference. With all other configura-
tions unchanged, as shown in Table 2, using the max pool-
ing operator yields a performance decrease of about 0.3%
in top-1 accuracy (77.81 vs. 77.53). We argue that this may
be due to the fact that, unlike max pooling, average pool-
ing builds connections among locations within the whole
pooling window, which can better capture local contextual
information.

Discussion: According to the above ablation experiments,
introducing self-calibrated convolutions is helpful for clas-
sification networks, like ResNet and ResNeXt. However,
note that exploring the optimal architecture setting is be-
yond the scope of this paper. This paper just provides a
preliminary study about how to improve the vanilla convo-
lutions. We encourage readers to further investigate more
effective structures. In the next subsection, we will show
how our approach behaves as pretrained backbones when
applied to popular vision tasks.



Model DS Rate (r) Identity Pooling Top-1 Accuracy

ResNet - - - 76.40%
ResNeXt - - - 77.40%
SE-ResNet - - AVG 77.20%

SCNet 1 3 - 77.38%
SCNet 2 3 AVG 77.48%
SCNet 4 7 AVG 77.48%
SCNet 4 3 MAX 77.53%

SCNet 4 3 AVG 77.81%
SCNeXt 4 3 AVG 78.30%

Table 2. Ablation experiments about the design choices of SC-
Net. ‘Identity’ refers to the corresponding component with the
same name as in Figure 2. ‘DS Rate’ is the down-sampling rate
in Eqn. 2. We also show results under two types of pooling opera-
tions: average pooling (AVG) and max pooling (MAX).

4.2.2 Comparisons with Attention-Based Approaches

Here, we benchmark the proposed SCNet against exist-
ing attention-based approaches, including CBAM [38],
SENet [16], GALA [25], AA [1], and GE [15], on the
ResNet-50 architecture. The comparison results can be
found in Table 3. It can be easily found that most atten-
tion or non-local based approaches require additional learn-
able parameters to build their corresponding modules and
then plug them into building blocks. Quite differently, our
approach does not rely on any extra learnable parameters,
but only heterogeneously exploits the convolutional filters.
Out results are obviously better than those of all other ap-
proaches. It should also be mentioned that the proposed
self-calibrated convolutions are also compatible with the
above mentioned attention-based approaches. For example,
when adding GE blocks to each building block of SCNet
as done in [15], we can further gain another 0.5% boost in
accuracy. This also indicates that our approach is different
from this kind of add-on modules.

4.3. Applications

In this subsection, we investigate the generalization ca-
pability of the proposed approach by applying it to popular
vision tasks as backbones, including object detection, in-
stance segmentation, and human keypoint detection.

4.3.1 Object Detection

Network Settings: In the object detection task, we take
the widely used Faster R-CNN architecture [29] with fea-
ture pyramid networks (FPNs) [23] as baselines. We
adopt the widely used mmdetection framework2 [4]
to run all our experiments. As done in previous work [23,

2https://github.com/open-mmlab/mmdetection

Network Params MAdds Top-1 Top-5
ResNet [12] 25.6M 4.1G 76.4 93.0
ResNeXt [40] 25.0M 4.3G 77.4 93.4
SE-ResNet [16] 28.1M 4.1G 77.2 93.4
ResNet + CBAM [38] 28.1M 4.1G 77.3 93.6
GCNet [3] 28.1M 4.1G 77.7 93.7
ResNet + GALA [25] 29.4M 4.1G 77.3 93.6
ResNet + AA [1] 28.1M 4.1G 77.7 93.6
ResNet + GE [15]† 31.2M 4.1G 78.0 93.6
SCNet 25.6M 4.0G 77.8 93.9
SCNet† 25.6M 4.0G 78.2 94.0
SE-SCNet 28.1M 4.0G 78.2 93.9
GE-SCNet 31.1M 4.0G 78.3 94.0

Table 3. Comparisons with prior attention-based approaches on the
ImageNet-1K dataset. All approaches are based on the ResNet-
50 baseline. We report single-crop accuracy rate (%) and show
complexity comparisons as well. ’†’ means models trained with
300 epochs.

11], we train each model using the union of 80k COCO
train images and 35k images from the validation set
(trainval35k) [24] and report results on the rest 5k val-
idation images (minival).

We set hyper-parameters strictly following the Faster R-
CNN work [29] and its FPN version [23]. Images are all re-
sized so that their shorter edges are with 800 pixels. We use
8 Tesla V100 GPUs to train each model and the mini-batch
is set to 16, i.e., , 2 images on each GPU. The initial learn-
ing rate is set to 0.02 and we use the 2× training schedule
to train each model. Weight decay and momentum are set
to 0.0001 and 0.9, respectively. We report the results using
the standard COCO metrics, including AP (averaged mean
Average Precision over different IoU thresholds), AP0.5,
AP0.75 and APS , APM , APL (AP at different scales). Both
50-layer and 101-layer backbones are adopted.

Detection Results: In the top part of Table 4, we show ex-
perimental results on object detection when different clas-
sification backbones are used. When taking Faster R-
CNN [29] as an example, adopting ResNet-50-FPN as
the backbone gives an AP score of 37.6 while replacing
ResNet-50 with SCNet-50 yields a large improvement of
3.2 (40.8 v.s. 37.6). More interestingly, Faster R-CNN with
SCNet-50 backbone performs even better than that with
ResNeXt-50 (40.8 v.s. 38.2). This indicates the proposed
way of leveraging convolutional filters is much more effi-
cient than directly grouping the filters. This may be because
the proposed self-calibrated convolutions contain the adap-
tive response calibration operation, which help more pre-
cisely locate the exact positions of target objects as shown
in Figure 6. In addition, from Table 4, we can observe that
using deeper backbones leads to a similar phenomenon as
above (ResNet-101-FPN: 39.9→ SCNet-101-FPN: 42.0).



Backbone AP AP0.5 AP0.75 APS APM APL

Object Detection (Faster R-CNN)
ResNet-50-FPN 37.6 59.4 40.4 21.9 41.2 48.4
SCNet-50-FPN 40.8 62.7 44.5 24.4 44.8 53.1

ResNeXt-50-FPN 38.2 60.1 41.4 22.2 41.7 49.2
SCNeXt-50-FPN 40.4 62.8 43.7 23.4 43.5 52.8

ResNet-101-FPN 39.9 61.2 43.5 23.5 43.9 51.7
SCNet-101-FPN 42.0 63.7 45.5 24.4 46.3 54.6

ResNeXt-101-FPN 40.5 62.1 44.2 23.2 44.4 52.9
SCNeXt-101-FPN 42.0 64.1 45.7 25.5 46.1 54.2

Instance Segmentation (Mask R-CNN)
ResNet-50-FPN 35.0 56.5 37.4 18.3 38.2 48.3
SCNet-50-FPN 37.2 59.9 39.5 17.8 40.3 54.2

ResNeXt-50-FPN 35.5 57.6 37.6 18.6 38.7 48.7
SCNeXt-50-FPN 37.5 60.3 40.0 18.2 40.5 55.0

ResNet-101-FPN 36.7 58.6 39.3 19.3 40.3 50.9
SCNet-101-FPN 38.4 61.0 41.0 18.2 41.6 56.6

ResNeXt-101-FPN 37.3 59.5 39.8 19.9 40.6 51.2
SCNeXt-101-FPN 38.2 61.2 40.8 18.8 41.4 56.1

Table 4. Comparisons with state-of-the-art approaches on COCO
minival dataset. All results are based on single-model test and
the same hyper-parameters. For object detection, AP refers to box
IoU while for instance segmentation AP refers to mask IoU.

4.3.2 Instance Segmentation

For instance segmentation, we use the same hyper-
parameters and datasets as in Mask R-CNN [11] for a fair
comparison. The results are based on the mmdetection
framework [4] for all experiments performed in this part.

We compare the SCNet version Mask R-CNN to the
ResNet version at the bottom of Table 4. Because we have
introduced object detection results in details, here we only
report the results using mask APs. As can be seen, the
ResNet-50-FPN version and the ResNeXt-50-FPN version
Mask R-CNNs have 35.0 and 35.5 mask APs, respectively.
However, when taking SCNet into account, the correspond-
ing results are respectively improved by 2.2 and 2.0 in mask
AP. Similar results can also be observed when adopting
deeper backbones. This suggests our self-calibrated con-
volutions are also helpful for instance segmentation.

4.3.3 Keypoint Detection

At last, we apply SCNet to human keypoint detection and
report results on the COCO keypoint detection dataset [24].
We take the state-of-the-art method [39] as our baseline. We
only replace the backbone ResNet in [39] with SCNet and
all other train and test settings3 are kept unchanged. We

3https://github.com/Microsoft/human-pose-estimation.pytorch

Backbone Scale AP AP.5 AP.75 APm APl

ResNet-50 256× 192 70.6 88.9 78.2 67.2 77.4
SCNet-50 256× 192 72.1 89.4 79.8 69.0 78.7

ResNet-50 384× 288 71.9 89.2 78.6 67.7 79.6
SCNet-50 384× 288 74.4 89.7 81.4 70.7 81.7

ResNet-101 256× 192 71.6 88.9 79.3 68.5 78.2
SCNet-101 256× 192 72.6 89.4 80.4 69.4 79.4

ResNet-101 384× 288 73.9 89.6 80.5 70.3 81.1
SCNet-101 384× 288 74.8 89.6 81.8 71.2 81.9

Table 5. Experiments on keypoint detection [24]. We report re-
sults on the COCO val2017 set using the OKS-based mAP and
take the state-of-the-art method [39] as our baseline. Two different
input sizes (256× 192 and 384× 288) are considered as in [39].

evaluate the results on the COCO val2017 set using the
standard OKS-based mAP, where OKS (object keypoints
similarity) defines the similarity between different human
poses. A Faster R-CNN object detector [29] with detection
AP of 56.4 for the ‘person’ category on COCO val2017
set is adopted for detection in the test phase as in [39].

Table 5 shows the comparisons. As can be seen, simply
replacing ResNet-50 with SCNet-50 improves the AP score
by 1.5% for 256 × 192 input size and 2.5% for 384 × 288
input size. These results demonstrate that introducing the
proposed self-calibration operation in convolutional layers
benefits human keypoint detection. When using deeper net-
works as backbones, we also have more than 1% perfor-
mance gain in AP as shown in Table 5.

5. Conclusions and Future Work
This paper presents a new self-calibrated convolution,

which is able to heterogeneously exploit the convolutional
filters nested in a convolutional layer. To promote the filters
to be of diverse patterns, we introduce the adaptive response
calibration operation. The proposed self-calibrated convo-
lutions can be easily embedded into modern classification
networks. Experiments on large-scale image classification
dataset demonstrate that building multi-scale feature repre-
sentations in building blocks greatly improves the predic-
tion accuracy. To investigate the generalization ability of
our approach, we apply it to multiple popular vision tasks
and find substantial improvements over the baseline models.
We hope the thought of heterogeneously exploiting convo-
lutional filters can provide the vision community a different
perspective on network architecture design.
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