
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Delving Deep into Label Smoothing
Chang-Bin Zhang†, Peng-Tao Jiang†, Qibin Hou, Yunchao Wei, Qi Han, Zhen Li, and Ming-Ming Cheng

Abstract—Label smoothing is an effective regularization tool
for deep neural networks (DNNs), which generates soft labels by
applying a weighted average between the uniform distribution
and the hard label. It is often used to reduce the overfitting
problem of training DNNs and further improve classification
performance. In this paper, we aim to investigate how to
generate more reliable soft labels. We present an Online Label
Smoothing (OLS) strategy, which generates soft labels based on
the statistics of the model prediction for the target category.
The proposed OLS constructs a more reasonable probability
distribution between the target categories and non-target cate-
gories to supervise DNNs. Experiments demonstrate that based
on the same classification models, the proposed approach can
effectively improve the classification performance on CIFAR-
100, ImageNet, and fine-grained datasets. Additionally, the pro-
posed method can significantly improve the robustness of DNN
models to noisy labels compared to current label smoothing
approaches. The source code is available at our project page:
https://mmcheng.net/lsmooth/

Index Terms—Regularization, classification, soft labels, online
label smoothing, knowledge distillation, noisy labels.

I. INTRODUCTION

DEEP Neural Networks (DNNs) [1], [2], [3], [4], [5],
[6], [7] have achieved remarkable performance in image

recognition [8], [9]. However, most DNNs tend to fall into
over-confidence for training samples, greatly influencing their
generalization ability to test samples. Recently, researchers
have proposed many regularization approaches, including Label
Smoothing [10], Bootstrap [11], CutOut [12], MixUp [13],
DropBlock [14] and ShakeDrop [15], to conquer the over-
fitting problem to the distribution of the training set. These
methods attempt to tackle this problem from the views of
data augmentation [12], [13], model design [14], [15], or label
transformation [10], [11], [16]. Among them, label smoothing
is a simple yet effective regularization tool operating on the
labels.

Label smoothing (LS), aiming at providing regularization for
a learnable classification model, is first proposed in [10]. Instead
of merely leveraging the hard labels for training (Fig. 1(a)),
Christian et al.[10] utilizes soft labels by taking an average
between the hard labels and the uniform distribution over labels
(Fig. 1(b)). Although such kind of soft labels can provide
strong regularization and prevent the learned models from
being over-confident, it treats the non-target categories equally
by assigning them with fixed identical probability. For example,
a ‘cat’ should be more like a ‘dog’ rather than an ‘automobile.’

C.B. Zhang, P.T. Jiang, Q. Han, Z. Li and M.M. Cheng are with
TKLNDST, CS, Nankai University. M.M. Cheng is the corresponding author
(cmm@nankai.edu.cn). † denotes equal contribution.

Q. Hou is with the National University of Singapore.
Y. Wei is with the University of Technology Sydney.

Therefore, we argue that the assigned probabilities of non-
target categories should highly consider their similarities to the
category of the given image. Equally treating each non-target
category could weaken the capability of label smoothing and
limit the model performance.

It has been demonstrated in [17] that model predictive
distributions provide a promising way to reveal the implicit
relationships among different categories. Motivated by this
knowledge, we propose a simple yet effective method to
generate more reliable soft labels that consider the relationships
among different categories to take the place of label smoothing.
Specifically, we maintain a moving label distribution for each
category, which can be updated during the training process.
The maintained label distributions keep changing at each
training epoch and are utilized to supervise DNNs until the
model reaches convergence. Our method takes advantage of
the statistics of the intermediate model predictions, which can
better build the relationships between the target categories and
the non-target ones. It can be observed from Fig. 1(c) that our
method gives more confidence to the animal categories instead
of those non-animal ones when the label is ‘cat.’

We conduct extensive experiments on CIFAR-100, Ima-
geNet [9] and four fine-grained datasets [18], [19], [20], [21].
Our OLS can make consistent improvements over baselines.
To be specific, directly applying OLS to ResNet-56 and
ResNeXt29-2x64d yields 1.57% and 2.11% top-1 performance
gains on CIFAR-100, respectively. For ImageNet, our OLS can
bring 1.4% and 1.02% performance improvements to ResNet-50
and ResNet-101 [2], respectively. On four fine-grained datasets,
OLS achieves an average 1.0% performance improvement
over LS [10] on four different backbones, i.e., ResNet-50 [2],
MobileNetv2 [6], EfficientNet-b7 [22] and SAN-15 [23]. The
proposed OLS can be naturally employed to tackle noisy labels
by reducing the overfitting to training sets. Additionally, OLS
can be conveniently used in the training process of many
models. We hope it can serve as an effective regularization
tool to augment the training of classification models.

II. RELATED WORK

Regularization tools on labels. Training DNNs with hard
labels (assigning 1 to the target category and 0 to the non-
target ones) often results in over-confident models. Boosting
labels is a straightforward yet effective way to alleviate the
overfitting problem and improve the accuracy and robustness of
DNNs. Bootstrapping [11] provided two options, Bootsoft and
Boothard, which smoothed the hard labels using the predicted
distribution and the predicted class, respectively. Xie et al. [26]
randomly perturbed labels of some samples in a mini-batch
to regularize the networks. To further prevent the training

https://mmcheng.net/lsmooth/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

0 1 2 3 4 5 6 7 8 9
Class Index

10 3

10 2

10 1

100
Pr

ob
ab

ilit
y

1.000

(a) Hard Label

0 1 2 3 4 5 6 7 8 9
Class Index

10 2

10 1

100

Pr
ob

ab
ilit

y

0.910

(b) LS

0 1 2 3 4 5 6 7 8 9
Class Index

10 3

10 2

10 1

100

Pr
ob

ab
ilit

y

0.961

(c) Ours

0 – airplane 1 – automobile 2 – bird 3 – cat 4 – deer 5 – dog 6 – frog 7 – horse 8 – ship 9 – truck

Fig. 1. Different kinds of label distributions on the CIFAR-10 dataset. The target category is ‘cat.’ We scale the y-axis using the log function for visualization.
(a) Original hard label. (b) Soft label generated by LS [10]. This soft label is a mixture of the hard label and uniform distribution. (c) Soft label generated by
our OLS method during the training process of ResNet-29.

TABLE I
COMPARISON BETWEEN OUR METHOD AND KNOWLEDGE DISTILLATION. SELF-KD DENOTES SELF-KNOWLEDGE DISTILLATION.

Vanilla KD [17] Arch.-based self-KD [24] Data-based self-KD [25] OLS (Ours)

Label sample-level sample-level sample-level class-level

Trained teacher model 3 7 7 7

Special network architecture 7 3 7 7

Forward times in one training iteration 2 1 2 1

models from overfitting to some specific samples, Dubey
et al. [27] added pairwise confusion to the output logits of
samples belonging to different categories in training so that
the models can learn slightly less discriminative features for
specific samples. Li et al. [28] used two networks to embed
the images and the labels in a latent space and regularize
the network via the distance between these embeddings.
Christian et al. [10] leveraged soft labels for training, where
the soft labels are generated by taking an average between
the hard labels and the uniform distribution over labels. Our
OLS also focuses on generating soft labels that can provide
stable regularization for models. Following AET [29], [30]
and AVT [31], Wang et al. [32] proposed an innovative
framework, EnAET [32], that combined semi-supervised and
self-supervised training. It learned feature representation by
predicting non-spatial and spatial transformation parameters.
Both our method and EnAET [32] obtained soft labels by
accumulating predictions of multiple samples. However, our
method is very different from EnAET [32]. It obtained soft
labels by accumulating the augmented views of the same
sample by different transformation functions. This consistency
constraint is also often used in self-Knowledge Distillation.
In contrast, our method is to encourage the predictions of
all samples in the same class to become consistent by the
accumulated class-level soft labels. Unlike the mentioned
approaches above, the soft labels generated by OLS take
advantage of the statistical characteristics of model predictions
of intermediate states.

Knowledge distillation. Knowledge distillation [17], [33],
[34], is a popular way to compress models, which can
significantly improve the performance of light-weight networks.
Knowledge distillation has been widely used in many tasks [35],

[36], [37], [38]. Hinton et al. [17] show that the success of
knowledge distillation is due to the model’s response to the non-
target classes. It shows that DNNs can discover the similarities
among different categories [17], [34] hidden in the predictions.
Inspired by knowledge distillation, some works [24], [25], [34]
utilized a self-distillation strategy to improve classification
accuracy. BYOT [24] designed a network architecture-based
self-Knowledge Distillation, which distilled the knowledge
from the deep layers to the shallow layer. Xu et al. [25] applied
a data-based self-Knowledge Distillation and encouraged the
output of the augmented samples (using data augmentation
methods) to be consistent with the original samples. Furlanello
et al. [34] proposed to distill the knowledge of the teacher
model to the student model with the same architecture. The
student model obtained a higher accuracy than the teacher
model. At the same time, Tommaso et al. [34] also verified
the importance of the similarity between categories in the soft
labels. Our work is inspired by knowledge distillation, aiming to
find a reasonable similarity among categories. Both knowledge
distillation and our method use the output logits of the network
as soft labels and benefit from the similarities hidden in the
logits [17], [34]. But there are many differences between our
method and the knowledge distillation. We summarize the main
differences in Tab. I. Without any teacher models, compared
with knowledge distillation, our method could save the training
cost, i.e., our method does not bring extra forward propagations.
Besides, our method is applicable to any network architecture
without special modification.

Classification against noisy labels. Noisy labels in current
datasets are inevitable due to the incorrect annotations by
humans. To deal with this problem, many researchers explored
solutions to this problem from both models [39], [40], data [41],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

[42] and training strategies [43], [44], [45]. A typical idea [46],
[47], [48] is to weight different samples to reduce the influence
of noisy samples on training. Ren et al. [46] verified each mini-
batch on the clean validation set to adjust each sample’s weight
in a mini-batch dynamically. MetaWeightNet [47] also exploited
the clean validation set to learn the weights for samples by
a multilayer perceptron (MLP). Moreover, some researchers
solve this problem from the optimization perspective [49],
[50]. Wang et al. [49] improved the robustness against noisy
labels by replacing the normal cross-entropy function with the
symmetric cross-entropy function. Arazo et al. [51] observed
that noisy samples often have higher losses than the clean ones
during the early epochs of training. Based on this observation,
they proposed to use the beta mixture model to represent clean
samples and noisy samples and adopt this model to provide
estimates of the actual class for noisy samples. Another kind
of idea [52], [53] is to train the network with only the right
labels. PENCIL [54] proposed a novel framework to learn
the correct label and model’s weights at the same time. This
method maintained a learnable label for each sample. Han et
al. [45] designed the label correction phase and performed the
training phase and label correction phase iteratively. They got
multiple prototypes for each class and redefined the labels for
all samples. Different from these two methods, our method
does not specifically design the process of label correction.
Therefore, our method does not bring extra learnable parameters
and does not conflict with the label correction strategy designed
in Han et al. [45]. On the other hand, we accumulate the
output of correctly predicted samples during training to get
the soft labels for each class. These soft labels bring intra-
class constraints to reduce the over-fitting to the wrong labels,
which improves the robustness to noisy labels. Although the
proposed OLS is not specifically designed for noisy labels, the
classification accuracy on noisy datasets is largely improved
when training models with OLS. The performance gain owes
to the ability of OLS to reduce the overfitting to noisy samples.

III. METHOD

A. Preliminaries
Given a dataset Dtrain = {(xi, yi)} with K classes, where

xi denotes the input image and yi denotes the corresponding
ground-truth label. For each sample (xi, yi), the DNN model
predicts a probability p(k|xi) for the class k using the softmax
function. The distribution q of the hard label yi can be denoted
as q(k = yi|xi) = 1 and q(k 6= yi|xi) = 0. Then, the standard
cross-entropy loss used in image classification for (xi, yi) can
be written as

Lhard = −
K∑
k=1

q(k|xi) log p(k|xi)

= − log p(k = yi|xi).

(1)

Instead of using hard labels for model training, LS [10]
utilizes soft labels that are generated by exploiting a uniform
distribution to smooth the distribution of the hard labels.
Specifically, the probability of xi being class k in the soft
label can be expressed as

q′(k|xi) = (1− ε)q(k|xi) +
ε

K
, (2)

where ε denotes the smoothing parameter that is usually set to
0.1 in practice. The assumption behind LS is that the confidence
for the non-target categories is treated equally as shown in
Fig. 1(b). Although combining the uniform distribution with
the original hard label is useful for regularization, LS itself
does not consider the genuine relationships among different
categories [55]. We take this into account and present our
online label smoothing method accordingly.

B. Online Label Smoothing

According to knowledge distillation, the similarity among
categories can be effectively discovered from the model
predictions [34], [17]. Motivated by this fact, unlike LS utilizing
a static soft label, we propose to exploit model predictions to
continuously update the soft labels during the training phase.
Specifically, in the training process, we maintain a class-level
soft label for each category. Given an input image xi, if the
classification is correct, the soft label corresponding to the target
class yi will be updated using the predicted probability p(xi).
Then the updated soft labels will be subsequently utilized to
supervise the model. The pipeline of our proposed method is
shown in Fig. II.

Formally, let T denote the number of training epochs. We
then define S = {S0, S1, · · · , St, · · · , ST−1} as the collection
of the class-level soft labels at different training epochs. Here,
St is a matrix with K rows and K columns, and each column
in St corresponds to the soft label for one category. In the
tth training epoch, given a sample (xi, yi), we use the soft
label St−1yi to form a temporary label distribution to supervise
the model, where St−1yi denotes the soft label for the target
category yi. The training loss of the model supervised by St−1yi
for (xi, yi) can be represented by

Lsoft = −
K∑
k=1

St−1yi,k
· log p(k|xi). (3)

It is possible that we directly use the above soft label to
supervise the training model, but we find that the model is
hard to converge due to the random parameter initialization at
the beginning and the lack of the hard label. Thus, we utilize
both the hard label and soft label as supervision to train the
model. Now, the total training loss can be represented by

L = αLhard + (1− α)Lsoft, (4)

where α is used to balancing Lhard and Lsoft.
In the tth training epoch, we also use the predicted prob-

abilities of the input samples to update Styi , which will be
utilized to supervise the model training in the t+ 1 epoch. At
the beginning of the tth training epoch, we initialize the soft
label St as a zero matrix. When an input sample (xi, yi) is
correctly classified by the model, we utilize its predicted score
p(xi) to update the yi column in St, which can be formulated
as

Styi,k = Styi,k + p(k|xi), (5)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

0.20

0.70

0.01

0.02

0.20

0.70

0.01

0.02

0.20

0.70

0.01

0.02

0.20

0.70

0.01

0.02

Supervise

Update S1 S2 S3 ··· St ··· ST

S0 S1 S2 ···St−1··· ST−1

epoch #1 #2 #3 ··· #t ···#T

Supervise

Update

S1 S2

Predicted category: 1
Ground-Truth: 1

0 1 2 · · · K 0 1 2 · · · K

Fig. 2. The illustration of training DNN with our online label smoothing method. The left part of the figure shows the whole training process. We simply
divided the training process into T phases according to the training epochs. K denotes the number of categories in datasets. We define each column of St to
represent the soft label for a target category. At each epoch, we use the soft labels generated in the previous epoch to supervise the model, and meanwhile, we
generate the soft labels for the next epoch. In the right, we show a detailed example of the training process in epoch#2. The generation of St is depicted in
Sec. III.

(a) Hard Label (b) LS (c) OLS
Fig. 3. Visualization of the penultimate layer representations of ResNet-56 on CIFAR-100 training set using t-SNE [56]. Note that we use the same color for
every 10 classes. We visualize the representations of all 100 classes (top). We zoom the patch in red boxes for better visualization. (bottom).

where k ∈ {1, · · · ,K}, indexing the soft label Styi . At the
end of the tth training epoch, we normalize the cumulative St

column by column as represented by

Styi,k ←
Styi,k∑K
l=1 S

t
yi,l

. (6)

We can now obtain the normalized soft label St for all K
categories, which will be used to supervise the model at the
next training epoch. Notice that we cannot obtain the soft label
at the first epoch. Thus, we use the uniform distribution to
initialize each column in S0. More details for the proposed
approach are described in Algorithm 1.

a) Discussion: The soft label St−1yi,k
generated from the

t− 1 epoch can be denoted as

St−1yi,k
=

1

N

N∑
j=1

pt−1(k|xj), (7)

where N denotes the number of correctly predicted samples
with label yi. pt−1(k|xj) is the output probability of category
k when input xj to the network at the t − 1 epoch. Then
Eqn. (3) can be rewritten as

Lsoft = −
K∑
k=1

1

N

N∑
j=1

pt−1(k|xj) · log p(k|xi)

= − 1

N

N∑
j=1

K∑
k=1

pt−1(k|xj) · log p(k|xi).

(8)

This equation indicates that all correctly classified samples xj

will impose a constraint to the current sample xi. The constrain
encourages the samples belonging to the same category to be
much closer. To give a more intuitive explanation, we utilize
t-SNE [56] to visualize the penultimate layer representations
of ResNet-56 on CIFAR-100 trained with the hard label,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Algorithm 1 The pipeline of the proposed OLS

Input: Dataset Dtrain = {(xi, yi)}, model fθ, training
epochs T
Initialize: Soft label matrix S0 = 1

K I , I denotes unit
matrix, K denotes the number of classes
for current epoch t = 1 to T do

Initialize: St = 0
for iter = 1 to iterations do

Sample a batch B ⊂ Dtrain, input to fθ
Obtain predicted probabilities {f(θ,xi),xi ∈ B}
Compute loss by Eqn. (4), backward to update the
parameter θ
for i = 1 to |B| do

Update St
yi
← St

yi
+ f(θ,xi)

end for
end for
Normalize St at each column

end for

LS, and OLS, respectively. Fig. 3 shows that our proposed
method provides a more recognizable difference between
representations of different classes and tighter intra-class
representations.

Besides, our method does not have the problem of training
divergence in the early stages of training. This is because we
use a uniform distribution as the soft label in the first epoch
of training, which is equivalent to the vanilla label smoothing.
In the entire training process afterwards, we only accumulate
correct predictions, which guarantees the correctness of the
generated soft labels.

IV. DISCUSSION

Comparison with Tf-KD [57].
The output of the teacher model in Label Smoothing [10] is

a uniform distribution. Yuan et al. [57] argue that this uniform
distribution could not reflect the correct class information,
so they propose a teacher-free knowledge distillation method,
called Tf-KDreg. They design a teacher with correct class
information. The output of the teacher model can be denoted
as:

u(k) =

{
a if k = c
1−a
K−1 if k 6= c

(9)

where u(k) is the hand-designed distribution, c is the correct
class and K is the number of classes. They set the hyper-
parameter a > 0.9. Although both this distribution and our
method could contain the correct class information, the hand-
designed distribution of Tf-KDreg is still uniform distribution
among non-target classes. The distribution of Tf-KD [57] still
does not imply similarities between classes. On the contrary, our
motivation is to find a non-uniform distribution that can reflect
the relationship between classes. Hinton et al. [17], Borns
Again Network [34] and Tf-KD [57] have emphasized this
view that knowledge distillation benefits from the similarities
among classes implied in the output of the teacher model. We
conduct experiments on four fine-grained datasets as shown

in Tab. VI. Our method benefits from the similarities between
classes, so it can perform better than Tf-KD [57].

Connection with the model ensemble. Integrating models
trained at different epochs is an effective and cost-saving
ensemble method. The way to integrate the outputs of models
trained at different epochs is described as follows:

zi =
1

||T ||
∑
t∈T

softmax(W (xi|θt)), (10)

where zi denotes the ensemble predictions, T denotes the
set of selected models in different epochs, W denotes the
network, θt denotes the network parameters in t-th epoch
and xi denotes the input sample. Both our method and the
model ensemble utilize the knowledge from different training
epochs. The model ensemble averages the outputs of models at
different epochs to make predictions. However, different from
the ensemble method, our method utilize the knowledge from
the previous epoch to help the learning in the current epoch.
Specifically, our method generates the soft labels in one training
epoch, and the soft labels are used to supervise the network
training. It is worth noting that our method does not conflict
with this ensemble strategy. To verify this point, we conduct
experiments on CIFAR-100 using ResNet-56. We apply the
same experimental setup described in the Sec. V. Experimental
results are shown in Tab. III. For all methods, we apply the
same ensemble strategy. We select models uniformly from the
whole training schedule (300 epochs). We choose 6, 10, 15 and
20 models for ensemble respectively. In Tab. III, our method
achieves 25.27% Top-1 Error. When our method equipping
with the ensemble method, the performance is further improved
by a large margin (‘20 Models’: 23.91%). The experiments
show that there is no conflict between our method and the
model ensemble.

V. EXPERIMENTS

In Sec. V-A, we first present and analyze the performance
of our approach on CIFAR-100, ImageNet, and some fine-
grained datasets. Then, we test the tolerance to symmetric
noisy labels in Sec. V-B and robustness to adversarial attacks in
Sec. V-C, respectively. In Sec. V-D, we apply our OLS to object
detection. Moreover, in Sec. V-E, we conduct extensive ablation
experiments to analyze the settings of our method. All the
experiments are implemented based on PyTorch platform [58].

A. General Image Recognition

CIFAR Classification. First, we conduct experiments on
CIFAR-100 dataset to compare our OLS with other related
methods, including regularization methods on labels (Boot-
strap [11], Disturb Label [26], Symmetric Cross Entropy [49],
Label Smoothing [10] and Pairwise Confusion [27]) and self-
knowledge distillation methods (Xu et al. [25] and BYOT [24]).
For a fair comparison with them, we keep the same experimen-
tal setup for all methods. Specifically, we train all the models
for 300 epochs with a batch size of 128. The learning rate is
initially set to 0.1 and decays at the 150th and 225th epoch
by a factor of 0.1, respectively. For other hyper-parameters in
different methods, we keep their original settings. Additionally,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

TABLE II
COMPARISON BETWEEN OUR METHOD AND THE STATE-OF-THE-ART APPROACHES. WE RUN EACH METHOD THREE TIMES ON CIFAR-100 AND COMPUTE

THE MEAN AND STANDARD DEVIATION OF THE TOP-1 ERROR (%). BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Method ResNet-34 ResNet-50 ResNet-101 ResNeXt29-2x64d ResNeXt29-32x4d

Hard Label 20.62 ± 0.21 21.21 ± 0.25 20.34 ± 0.40 20.92 ± 0.52 20.85 ± 0.17
Bootsoft [11] 21.65 ± 0.13 21.25 ± 0.67 20.37 ± 0.07 21.20 ± 0.13 20.86 ± 0.24
Boothard [11] 22.58 ± 0.02 20.81 ± 0.13 21.46 ± 0.22 21.00 ± 0.10 21.47 ± 0.59
Disturb Label [26] 20.91 ± 0.30 22.12 ± 0.51 20.99 ± 0.12 21.64 ± 0.24 21.69 ± 0.06
SCE [49] 22.86 ± 0.08 22.12 ± 0.11 22.60 ± 0.64 23.07 ± 0.28 22.96 ± 0.09
LS [10] 20.94 ± 0.08 21.20 ± 0.25 20.12 ± 0.02 20.34 ± 0.24 19.56 ± 0.18
Pairwise Confusion [27] 22.91 ± 0.04 23.09 ± 0.53 22.73 ± 0.39 21.55 ± 0.11 21.74 ± 0.04
Xu et al. [25] 22.65 ± 0.09 22.05 ± 0.43 21.70 ± 0.77 22.81 ± 0.08 23.14 ± 0.04
OLS 20.04 ± 0.11 20.65 ± 0.14 19.66 ± 0.15 18.81 ± 0.45 18.79 ± 0.20

BYOT [24] 20.41 ± 0.10 19.20 ± 0.30 18.51 ± 0.49 19.69 ± 0.12 20.33 ± 0.19
BYOT [24] + OLS 19.44 ± 0.09 18.15 ± 0.21 18.14 ± 0.08 18.29 ± 0.20 19.25 ± 0.29

TABLE III
THE TOP-1 ERROR OF MODEL ENSEMBLE. WE INTEGRATE 6, 10, 15, AND 20 MODELS TRAINED AT DIFFERENT EPOCHS, RESPECTIVELY. THE MODELS ARE

SELECTED UNIFORMLY FROM ALL TRAINING EPOCHS (300 EPOCHS).

Method 1 Model 6 Models 10 Models 15 Models 20 Models

HardLabel 26.41 26.07 25.93 25.87 25.88
LS [10] 26.37 25.30 25.11 24.97 24.96

OLS (ours) 25.27 24.52 24.22 24.10 23.91

for a fair comparison with BYOT [24] and Xu et al. [25], we
remove the feature-level supervision in them and only use the
class labels to supervise models.

Tab. II shows the classification results of each method based
on different network architectures. It can be seen that our
method significantly improves the classification performance
on both lightweight and complex models, which indicates
its robustness to different networks. Since BYOT [24] is
learned with deep supervision, it performs better on deeper
models, like ResNet-50 and ResNet-101, than our method.
However, our method can be easily plugged into BYOT [24]
and achieves better results than BYOT on deeper models. In
addition, comparing to LS [10], our method achieves stable
improvement on different models. Especially, our method
outperforms LS by about 1.5% on ResNeXt29-2x64d. We
argue that the performance gain owes to the useful relationships
among categories discovered by our soft labels. In Sec. V-E,
we will further analyze the importance of building relationships
among categories.

ImageNet Classification. We also evaluate our method on
a large-scale dataset, ImageNet. It contains 1K categories with
a total of 1.2M training images and 50K validation images.
Specifically, we use the SGD optimizer to train all the models
for 250 epochs with a batch size of 256. The learning rate is
initially set to 0.1 and decays at the 75th, 150th, and 225th
epochs, respectively. We report the best performance of each
method.

The classification performance on ImageNet dataset is shown
in Tab. IV. Applying our OLS to ResNet-50 achieves 22.28%
Top-1 Error, which is better than the result with LS [10] by
0.54%. Additionally, ResNet-101 with our OLS can achieve
20.85% top-1 error, which improves ResNet-101 by 1.02% and
ResNet-101 with LS by 0.42%, respectively. This demonstrates
that our OLS still performs well on the large-scale dataset.

TABLE IV
CLASSIFICATION RESULTS ON IMAGENET. ‡ DENOTES THE RESULTS

REPORTED IN TF-KD [57].

Model Top-1
Error(%)

Top-5
Error(%)

ResNet-50 24.23‡ -
ResNet-50 + LS [10] 23.62‡ -
ResNet-50 + Tf-KDself [57] 23.59‡ -
ResNet-50 + Tf-KDreg [57] 23.58‡ -

ResNet-50 23.68 7.05
ResNet-50 + Bootsoft [11] 23.49 6.85
ResNet-50 + Boothard [11] 23.85 7.07
ResNet-50 + LS [10] 22.82 6.66
ResNet-50 + CutOut [12] 22.93 6.66
ResNet-50 + Disturb Label [26] 23.59 6.90
ResNet-50 + BYOT [24] 23.04 6.51
ResNet-50 + OLS 22.28 6.39
ResNet-50 + CutOut [12] + OLS 21.98 6.18
ResNet-50 + BYOT [24] + OLS 21.88 6.27

ResNet-101 21.87 6.29
ResNet-101 + LS [10] 21.27 5.85
ResNet-101 + CutOut [12] 20.72 5.51
ResNet-101 + OLS 20.85 5.50
ResNet-101 + CutOut [9] + LS [10] 20.47 5.51
ResNet-101 + CutOut [9] + OLS 20.25 5.42

Moreover, we explore the combination of our method with
other strategies, i.e., data augmentation (CutOut [12]) and
self-distillation (BYOT [24]). In Tab. IV, we observe the
combination with them brings extra performance gains to
ResNet50 and ResNet101. Our OLS can be utilized as a plug-
in regularization module, which is easy to be combined with
other methods.

Fine-grained Classification. The fine-grained image classifi-
cation task [59], [60], [61], [62], [63] focuses on distinguishing
subordinate categories within entry-level categories [27], [64],

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

TABLE V
DETAILED INFORMATION OF THE FINE-GRAINED DATASETS.

Dataset Categories Training Samples Test Samples

CUB-200-2011 [19] 200 5994 5794
Flowers-102 [18] 102 2040 6149
Cars [20] 196 8144 8041
Aircrafts [21] 90 6667 3333

[65], [66]. We conduct experiments on four fine-grained image
recognition datasets, including CUB-200-2011 [19], Flowers-
102 [18], Cars [20] and Aircrafts [21] , respectively. In Tab. V,
we present the details of these datasets. For all experiments, we
keep the same experimental setup. Specifically, we use SGD as
the optimizer and train all models for 100 epochs. The initial
learning rate is set as 0.01 and it decays at the 45th epoch and
80th epoch, respectively. In Tab. VI, we report the average
Top-1 Error(%) and Top-5 Error(%) of three runs. Experiment
results demonstrate that OLS can also improve classification
performance on the fine-grained datasets, which indicates our
soft labels can benefit fine-grained category classification.

B. Tolerance to Noisy Labels

As demonstrated in [49], [67], there exist noisy (incorrect)
labels in datasets, especially those obtained from webs. Due
to the powerful fitting ability of DNNs, they can still fit noisy
labels easily [68]. But this is harmful for the generalization of
DNNs. To reduce such damage to the generalization ability of
DNNs, researchers have proposed many methods, including
weighting the samples [46], [47] and inferring the real labels
of the noisy samples [11], [51]. We notice that our method
can improve the performance of DNNs on noisy labels by
reducing the fitting to noisy samples. We conduct experiments
on CIFAR-100 to verify the regularization capability of our
method on noisy data.

We follow the same experimental settings as in [49], [51].
We randomly select a certain number of samples according to
the noisy rate and flip the labels of these samples to the wrong
labels uniformly (symmetric noise) before training. Since both
Ren et al. [46] and MetaWeightNet [47] need to split a part
of the clean validation set from the training set, we keep their
default optimal number of samples in the validation set.

In Tab. VII, we report the classification results based
on the ResNet-56 model when the noisy rate is set to
{0%, 20%, 40%, 60%, 80%}, respectively. It can be seen that
our method achieves comparable results with those meth-
ods [49], [46], [47], [51] that are specifically designed for
noisy labels. Comparing with LS, our method achieves stable
improvement under different noisy rates. We also visualize
training and test errors during the training process. As shown
in Fig. 4, our method achieves higher training errors than
models trained with hard labels and LS. However, our method
has lower test errors. This demonstrates that our method can
effectively reduce the overfitting to noisy samples.

Furthermore, as shown in Fig. 5, we visualize the Top-1
Error for the set of samples with wrong labels in the training set
during the training process. Note that the error rate calculation

uses the wrong labels, i.e., the higher the error rate for the
wrong labels, the lower the fit to the wrong labels. Our method
fits the wrong labels worse than baselines. This phenomenon
demonstrates that our method is robust to noisy labels by
reducing the fitting to wrong labels. Our method brings intra-
class constraints, which makes it more difficult for the model
to fit the data with the wrong labels.

C. Robustness to Adversarial Attacks

In this section, we first explain why our method is more
robust to adversarial attacks. To get the adversarial example for
x, FGSM looks for points that cross the decision boundary in
the neighborhood ε-ball of sample x, so that x is misclassified.
The adversarial example xadv could be denoted as:

xadv = x+ γsign(∇xL(θ, x, y)), (11)

where L denotes the loss function and γ is a coefficient denoting
the optimization step. The sign() is

sign(z) =

1 if z > 0

0 if z = 0

−1 if z < 0.

(12)

As shown in Fig. 6(a), the purpose of FGSM [69] is to find a
perturbation point that can be misclassified in the neighborhood
(ε-ball) for each sample. Therefore, it is easy to find the
adversarial example for samples near the decision boundary. In
our method, for each class k, the soft label is accumulated by
all predictions of samples in the same class. The loss function
as Eqn. (8) indicates that all correctly classified samples xi
will impose the intra-class constraints to the current training
sample xi. The constraints encourage the samples belonging
to the same class to be much closer. As shown in Fig. 6(b), in
one training iteration, the intra-class constraints in our method
will drive the current training sample to become more closer
with samples in the same class. Thus, the intra-class will lead
to the compactification of samples in the same class, as shown
in Fig. 6(c). Compared to Fig. 6(a), the number of samples
near the decision boundary will be reduced. This will make
the model more robust against adversarial attacks.

And we evaluate the robustness of the models trained by
different methods against adversarial attack algorithms on
CIFAR-10 and ImageNet, respectively. We use the Fast Gradient
Sign Method (FGSM) [69] and Projected Gradient Descent
(PGD) [70] to generate adversarial samples. For FGSM, we
keep its default setup. Therefore, the `∞ bound is set to 8 for
all methods. For PGD, we apply the same experimental setup
as in [71] except that we increase the iteration times to 20,
which is enough to get better attack effects.

In Tab. VIII, we have reported the Top-1 Error after the
adversarial attack from the FGSM and PGD algorithms on the
CIFAR-10 dataset. After the FGSM and PGD attack, the models
trained with our method keep the lowest Top-1 Error rate. We
can see that the models trained with our OLS algorithm are
much more robust to the adversarial attack than those trained
with other methods. Moreover, we apply the same experiments
on ImageNet, as shown in Tab. IX. Compared with the hard
label, OLS achieves an average 17.9% gain in terms of Top-1

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE VI
THE TOP-1 AND TOP-5 ERROR(%) OF DIFFERENT ARCHITECTURES ON FINE-GRAINED CLASSIFICATION DATASETS. ALL RESULTS ARE AVERAGED OVER

THREE RUNS. THE4 DENOTES THE AVERAGE IMPROVEMENT RELATIVE TO HARD LABEL ON ALL DATASETS AND BACKBONES.

Dataset Backbones Hard Label LS [10] Tf-KD [57] OLS

Top-1 Err(%) Top-5 Err(%) Top-1 Err(%) Top-5 Err(%) Top-1 Err(%) Top-5 Err(%) Top-1 Err(%) Top-5 Err(%)

CUB-200-2011 [19]

ResNet-50 [2]

19.19± 0.22 5.00± 0.25 18.11± 0.14 4.88± 0.08 19.04± 0.23 4.92± 0.16 17.53± 0.09 4.01± 0.27
Flowers-102 [18] 9.31± 0.19 2.43± 0.14 7.58± 0.07 1.93± 0.03 8.70± 0.45 2.46± 0.09 7.14± 0.14 1.55± 0.07
Cars [20] 9.58± 0.19 1.79± 0.01 8.32± 0.09 1.57± 0.03 8.65± 0.16 1.46± 0.10 7.46± 0.01 0.92± 0.04
Aircrafts [21] 11.88± 0.11 3.86± 0.13 9.92± 0.07 3.73± 0.12 10.55± 0.22 3.34± 0.21 9.19± 0.12 2.60± 0.03

CUB-200-2011 [19]

MobileNetv2 [6]

22.24± 0.33 6.61± 0.21 21.33± 0.29 7.05± 0.09 22.36± 0.27 6.41± 1.47 20.05± 0.11 5.08± 0.12
Flowers-102 [18] 8.97± 0.09 2.51± 0.19 8.06± 0.35 2.46± 0.08 8.05± 0.14 2.23± 0.13 7.27± 0.17 1.77± 0.10
Cars [20] 11.71± 0.13 2.29± 0.12 10.17± 0.07 2.33± 0.05 10.57± 0.09 2.14± 0.04 9.25± 0.05 1.33± 0.02
Aircrafts [21] 13.16± 0.33 4.15± 0.19 12.05± 0.29 4.08± 0.17 11.95± 0.27 4.04± 0.10 10.53± 0.25 2.96± 0.15

CUB-200-2011 [19]

EfficientNet-b7 [22]

18.44± 0.15 5.07± 0.13 17.40± 0.14 5.02± 0.03 20.24± 0.09 6.33± 0.21 16.21± 0.24 3.34± 0.02
Flowers-102 [18] 9.50± 0.07 2.04± 0.07 9.42± 0.34 2.34± 0.13 8.58± 0.37 2.07± 0.10 8.16± 0.12 1.63± 0.15
Cars [20] 9.24± 0.22 1.84± 0.13 8.42± 0.08 1.76± 0.07 9.52± 0.01 1.64± 0.01 7.53± 0.13 0.97± 0.02
Aircrafts [21] 11.61± 0.37 3.72± 0.20 9.60± 0.15 3.62± 0.13 9.45± 0.49 2.01± 0.04 8.83± 0.19 2.71± 0.12

CUB-200-2011 [19]

SAN-15 [23]

19.05± 0.39 5.37± 0.25 17.54± 0.30 5.43± 0.19 19.88± 0.17 5.81± 0.03 17.28± 0.14 4.08± 0.07
Flowers-102 [18] 7.85± 0.29 1.78± 0.21 8.08± 0.34 1.95± 0.15 7.87± 0.43 1.91± 0.28 7.09± 0.18 1.56± 0.12
Cars [20] 9.23± 0.07 1.78± 0.02 8.55± 0.15 1.87± 0.04 8.98± 0.07 1.76± 0.14 7.55± 0.14 1.08± 0.07
Aircrafts [21] 11.31± 0.13 3.79± 0.08 9.96± 0.09 3.45± 0.14 10.77± 0.03 4.18± 0.08 9.43± 0.08 2.95± 0.09

Average Improvements (4) 0.00 0.00 1.11 ↑ 0.02 ↑ 0.44 ↑ 0.19 ↑ 2.00 ↑ 0.96 ↑

TABLE VII
THE CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS UNDER DIFFERENT NOISY RATES. WE RUN EACH METHOD THREE TIMES UNDER DIFFERENT

NOISY RATES AND COMPUTE THE MEAN AND STANDARD DEVIATION OF THE TOP-1 ERROR(%). THE BEST TWO RESULTS ARE IN BOLD.

Method/Noise Rate 0% 20% 40% 60% 80%

Hard Label 26.81 ± 0.36 37.75 ± 0.50 47.07 ± 1.08 62.06 ± 0.62 81.56 ± 0.42
Bootsoft [11] 27.28 ± 0.35 37.99 ± 0.43 46.96 ± 0.33 63.76 ± 0.85 80.32 ± 0.33
Boothard [11] 26.02 ± 0.22 36.21 ± 0.29 42.73 ± 0.16 54.95 ± 2.20 81.20 ± 1.26
Symmetric Cross Entropy [49] 28.97 ± 0.31 38.40 ± 0.12 46.97 ± 0.65 62.13 ± 0.55 82.66 ± 0.10
Ren et al.[46] 38.38 ± 0.35 43.74 ± 1.21 49.83 ± 0.53 57.65 ± 0.98 73.04 ± 0.15
MetaWeightNet [47] 29.51 ± 0.51 35.06 ± 0.48 43.58 ± 0.93 56.15 ± 0.60 87.25 ± 0.22
Arazo et al.[51] 33.80 ± 0.10 33.91 ± 0.38 40.87 ± 1.49 52.91 ± 1.81 83.92 ± 0.19
PENCIL [54] 29.36 ± 0.35 36.33 ± 0.15 43.55 ± 0.08 57.49 ± 1.05 79.24 ± 0.11
Han et al. [45] 32.07 ± 0.36 35.08 ± 0.19 44.39 ± 0.23 62.50 ± 0.61 80.39 ± 0.16

LS [10] 26.37 ± 0.41 35.48 ± 0.61 43.99 ± 1.04 59.51 ± 0.80 80.36 ± 0.90
OLS 25.24 ± 0.18 32.67 ± 0.14 38.86 ± 0.13 50.04 ± 0.14 78.22 ± 1.01

0 100 200 300
Epoch

20

40

60

80

Er
ro

r(%
)

Noise rate = 20%
HardLabel test
HardLabel train
OLS test
OLS train

0 100 200 300
Epoch

40

60

80

Er
ro

r(%
)

Noise rate = 40%
HardLabel test
HardLabel train
OLS test
OLS train

0 100 200 300
Epoch

50

60

70

80

90

100

Er
ro

r(%
)

Noise rate = 60%
HardLabel test
HardLabel train
OLS test
OLS train

Fig. 4. We display the training error and test error under different noise rates (20%, 40%, 60%).

0 100 200 300
Epoch

40

60

80

100

Er
ro

r(%
)

Noisy data

HardLabel
LS
OLS

Fig. 5. We show the error rate in the training process on all images with
wrong labels in the training set. The error rate calculation is still based on
the wrong labels, i.e., the labels of the images are wrong. Experiments are
conducted on CIFAR-100 under a 40% noise rate.

Error and an average 13.9% gain in terms of Top-5 Error. Our
method can also outperform LS [10] by 2.3% and by 2.4%
on Top-1 Error and Top-5 Error, respectively. We argue that
the soft labels generated in our algorithm contain similarities
between categories, making the distances of the embedding
of samples in the same class closer. Experiments show that
OLS can effectively improve the robustness of the model to
adversarial examples.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

(a)Training w/o intra-class constraints (b)Training w/ intra-class constraints for a sample (c)Training w/ intra-class constraints

samples neighborhood
(ε-ball)

optimization
target

optimization
direction

adversarial
example

Fig. 6. The impact of intra-class constraints on training. (a) After being trained with hard labels, it is easy to get the adversarial example with the ε-ball of it
crossing the decision boundary. (b) In one training iteration, the OLS makes consistency constraints between current training samples and samples in the same
class, which makes the current training samples far away from the decision boundary. The dotted line indicates that each sample in the same class will have a
consistency constraint on the current training sample. The solid line denotes the optimization direction of this training sample. (c) The intra-class constraints
make the samples in the same class closer, and further away from the decision boundary. It will be more difficult to find adversarial samples.

TABLE VIII
ROBUSTNESS TO ADVERSARIAL ATTACK ON CIFAR-10. WE USE FGSM

AND PGD ALGORITHMS TO ATTACK RESNET-29 TRAINED ON CIFAR-10,
RESPECTIVELY. WE SET THE ITERATION TIMES OF PGD ATTACK

ALGORITHM AS 20.

Method ResNet-29
Top-1 Err(%)

+ FGSM
Top-1 Err(%)

+ PGD
Top-1 Err(%)

Hard Label 7.18 82.46 93.18
Bootsoft [11] 6.91 79.83 92.57
Boothard [11] 7.73 82.68 90.01
Symmetric Cross Entropy [49] 8.66 77.68 93.96
LS [10] 6.81 79.48 87.32
OLS 6.46 60.39 76.29

TABLE IX
TOP-1 AND TOP-5 ERROR(%) OF RESNET-50 ON IMAGENET AFTER THE
ADVERSARIAL ATTACK. FOR TWO ADVERSARIAL ATTACK ALGORITHMS,

FGSM AND PGD, WE KEEP THEIR DEFAULT SETTING. WE SET THE
ITERATION TIMES OF PGD ATTACK ALGORITHM AS 20.

ResNet-50 + FGSM + PGD

Top-1 Err(%) Top-5 Err(%) Top-1 Err(%) Top-5 Err(%)

Hard Label 91.07 66.21 94.93 31.82
Bootsoft [11] 91.29 67.29 94.56 31.07
LS [10] 74.44 50.63 80.31 24.46
OLS 75.79 48.13 74.43 22.14

TABLE X
OBJECT DETECTION RESULTS. WE TRAIN YOLO [72] ON PASCAL VOC

DATASET.

Method Hard Label LS [10] OLS

mAP (%) 81.6 82.3 82.7

D. Object Detection

Our OLS can be easily applied to the object detection
framework [73], [74], [75], [76], [77]. We select YOLO [72]

as our basic detector. We train the detector on the popular
PASCAL VOC dataset [78]. As shown in Tab. X, when YOLO
is equipped with our OLS, it obtains a 1.1% gain over the
hard label and a 0.4% gain over LS in terms of mean average
precision (mAP), indicating OLS has stronger regularization
ability than LS on the object detection.

Implement details. We use MobileNetv2 [6] as the back-
bone of YOLO [72]. We regard the combination of the training
set and validation set from PASCAL VOC 2012 and PASCAL
VOC 2007 as the training set. And we test the model on the
PASCAL VOC 2007 test set. During training, we use standard
training strategies, including warming up, multi-scale training,
random crop, etc. We train the model for 120 epochs using
SGD optimizer with an initial learning rate 0.0001 and cosine
learning rate decay schedule. During tests, we also use multi-
scale inference.

E. Ablation Study
In this subsection, we first conduct experiments to study

the hyper-parameters in our method. Then we analyze the
relationships among categories indicated by our soft labels.
Besides, we also present a variant of OLS. Finally, we present
the calibration effect of our method. All the experiments are
conducted on the CIFAR dataset.

Impact of Hyper-parameters. We first analyze the hyper-
parameter α in Eqn. (4) using ResNet-29. Unlike previous
experiments that directly set α to 0.5, we enumerate possible
values with α ∈ {0.1, 0.2, · · · , 1.0}. We plot the experiment
results as shown in Fig. 7(a). It can be seen that the model
achieves the lowest top-1 error when α is set to 0.5. Since the
model lacks guidelines for the correct category, we observe
that when α is set to 0, the model is hard to convergent. When
α changes from 0.1 to 0.5, the error rate gradually decreases.
This fact suggests that the model still needs the correct category
information provided by the original hard labels.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE XI
TOP-1 ERROR(%) AND EXPECTED CALIBRATION ERROR(ECE) ON CIFAR-100. LOWER IS BETTER.

Method ResNet-56 ResNet-74 ResNet-110

Top-1 Error(%) ECE Top-1 Error(%) ECE Top-1 Error(%) ECE

Hard Label 26.81± 0.36 11.37± 0.53 25.86± 0.19 12.70± 0.76 25.54± 0.44 13.14± 1.16
LS [10] 26.37± 0.41 3.35± 0.86 25.90± 0.31 2.37± 0.94 25.14± 0.31 2.32± 1.03
OLS 25.24± 0.18 2.85± 1.44 24.89± 0.08 1.81± 0.85 23.86± 0.27 2.05± 0.68

0.2 0.4 0.6 0.8 1.0

27.6

27.8

28.0

28.2

28.4

Er
ro

r(%
)

OLS
LS

(a) Impact of α

12 24 48 96 192 384 768 1536 3072
Iteration times of a phase

27.5

28.0

28.5

29.0

Er
ro

r(%
)

OLS
LS

(b) Impact of the updating period
Fig. 7. Impact of hyper-parameters. The Top-1 Error of different α and
updating period.

Moreover, we also conduct experiments to study the impact
of the updating period for the soft label matrix S in the training
process. In the previous experiments in Sec. V-A, we set the
updating period to one epoch. As shown in Fig. 7(b), we
evaluate our approach with different updating periods (iteration
times ∈ {12, 24, 48, · · · , 1536, 3072}). The best performance
is obtained when the updating period is set to one epoch.
We observe that the classification performance is very close
when the updating period is less than one epoch (1 epoch is
approximately 384 iterations). However, when the updating
period is longer than one training epoch, the performance
decreases sharply. We analyze that with the training of the
network, the predictions become better and better. When using
more iterations to update soft labels, the relationships indicated
by the early predictions will be very different from that of
late ones. The early predictions become out of date for current
training.

Importance of relationships among categories. We argue
that classification models can benefit from soft labels that con-
tain the knowledge of relationships among different categories.
Specifically, we utilize a human uncertainty dataset [71] called
CIFAR-10H to verify the reliability of the relationships among
different categories. CIFAR-10H captures the full distribution
of the labels by collecting votes from more than 50 people for
each sample in the CIFAR-10 test set. The human uncertainty
labels can be regarded as a kind of soft label that considers
the similarities among different categories. They find that
models trained on the human uncertainty labels will have better
accuracy and generalization than those trained on hard labels.
To explore the rationality of relationships among categories
found by our approach, we use KL divergence to measure the
difference between the predicted probability distribution of the
model and the human uncertainty distribution on CIFAR-10H.

For a fair comparison, we only consider the correctly
predicted samples by each model, when computing the KL
Divergence on CIFAR-10H. As shown in Table XII, we list
the average KL divergence of different methods on CIFAR-
10H [71] and Top-1 Error(%) on CIFAR-10. The results show

TABLE XII
MULTIPLE EVALUATION RESULTS OF THE MODEL. WE FIRST TRAIN

RESNET-29 WITH DIFFERENT METHODS ON CIFAR-10. WE USE THE
AVERAGE KL DIVERGENCE TO MEASURE THE DIFFERENCE BETWEEN THE
PREDICTION DISTRIBUTION OF THE MODELS AND HUMAN UNCERTAINTY

ON CIFAR-10H TEST SET.

Method CIFAR-10
Top-1 Err(%)

CIFAR-10H
KL Divergence

Hard Label 7.18 0.2974
Bootsoft [11] 6.91 0.3247
Boothard [11] 7.73 0.3188
Symmetric Cross Entropy [49] 8.66 0.5563
LS [10] 6.81 0.1866
OLS 6.46 0.1399

that the prediction distribution of the model trained by our
method is closer to that of humans. Also, this indicates that
the model trained by our approach finds more reasonable and
correct relationships among categories.

Sample-level soft labels. To verify the effectiveness of the
statistical characteristics of accumulating model predictions,
we use the predicted distribution of a single sample (denoted as
OLS-Single for short) to regularize the training process. To be
specific, for each training sample, we randomly select another
training sample with the same category. We then acquire the
randomly selected training sample’s predictive distribution and
utilize this distribution as the soft label to serve as supervision
for the current training sample. Based on the ResNet-56, OLS
(25.24 ± 0.18) outperforms OLS-Single (26.18 ± 0.30) by
about 1%. This result demonstrates that the accumulation of
the predictions from different samples can well explore the
relationships among categories.

Calibration effect. The confidence calibration is proposed
in [79], which is used to measure the degree of overfitting of the
model to the training set. We use the Expected Calibration Error
(ECE) [79] to measure the calibration ability of OLS. In Tab. XI,
we report the Top-1 Error(%) and ECE on several models,
which denotes our method can calibrate neural networks.
Experimental results show that our method achieves a lower
Top-1 Error than LS by an average of 1.14%. Meanwhile, our
method also achieves lower ECE values on three different
depth models. This indicates that the proposed method can
more effectively prevent over-confident predictions and show
better calibration capability.

VI. CONCLUSION

In this paper, we propose an online label smoothing method.
We utilize the statistics of the intermediate model predictions to
generate soft labels, which are subsequently used to supervise

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

the model. Our soft labels considering the relationships among
categories are effective in preventing the overfitting problem
of DNNs to the training set. We evaluate our OLS on CIFAR,
ImageNet and four fine-grained datasets, respectively. On
CIFAR-100, ResNeXt-2x64d trained with our OLS achieves
18.81% Top-1 Error, which brings an 2.11% performance
gain. On ImageNet dataset, our OLS brings 1.4% and 1.02%
performance gains to ResNet-50 and ResNet-101, respectively.
On four fine-grained datasets, OLS outperforms the hard label
by 2% in terms of Top-1 Error.

ACKNOWLEDGMENTS

This research was supported by the National Key Re-
search and Development Program of China under Grant No.
2018AAA0100400, NSFC (61922046), S&T innovation project
from Chinese Ministry of Education, and the Fundamental
Research Funds for the Central Universities (Nankai University,
NO. 63213090).

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Int. Conf. Learn. Represent., 2015.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp.
770–778.

[3] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2017, pp. 4700–4708.

[4] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2017, pp. 1492–1500.

[5] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2018, pp. 7132–7141.

[6] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in IEEE Conf.
Comput. Vis. Pattern Recog., 2018, pp. 4510–4520.

[7] S.-H. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. Torr,
“Res2net: A new multi-scale backbone architecture,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 43, no. 2, pp. 652–662, 2020.

[8] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2009, pp. 248–255.

[10] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2016, pp. 2818–2826.

[11] S. E. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabi-
novich, “Training deep neural networks on noisy labels with bootstrap-
ping,” in Int. Conf. Learn. Represent. Worksh., 2015.

[12] T. DeVries and G. W. Taylor, “Improved regularization of convolutional
neural networks with cutout,” arXiv preprint arXiv:1708.04552, 2017.

[13] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” in Int. Conf. Learn. Represent., 2018.

[14] G. Ghiasi, T.-Y. Lin, and Q. V. Le, “Dropblock: A regularization method
for convolutional networks,” in Adv. Neural Inform. Process. Syst., 2018,
pp. 10 727–10 737.

[15] Y. Yamada, M. Iwamura, T. Akiba, and K. Kise, “Shakedrop regular-
ization for deep residual learning,” IEEE Access, pp. 186 126–186 136,
2019.

[16] G.-J. Qi, “Loss-sensitive generative adversarial networks on lipschitz
densities,” Int. J. Comput. Vis., vol. 128, no. 5, pp. 1118–1140, 2020.

[17] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Adv. Neural Inform. Process. Syst. Worksh., 2015.

[18] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in 2008 Sixth Indian Conference on Computer
Vision, Graphics & Image Processing, 2008, pp. 722–729.

[19] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The Caltech-
UCSD Birds-200-2011 Dataset,” California Institute of Technology, Tech.
Rep. CNS-TR-2011-001, 2011.

[20] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3d object representations
for fine-grained categorization,” in Int. Conf. Comput. Vis. Worksh., 2013,
pp. 554–561.

[21] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” arXiv preprint arXiv:1306.5151,
2013.

[22] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Int. Conf. Mech. Learn., vol. 97,
2019, pp. 6105–6114.

[23] H. Zhao, J. Jia, and V. Koltun, “Exploring self-attention for image
recognition,” in IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp.
10 076–10 085.

[24] L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma, “Be your own
teacher: Improve the performance of convolutional neural networks via
self distillation,” in Int. Conf. Comput. Vis., 2019, pp. 3712–3721.

[25] T.-B. Xu and C.-L. Liu, “Data-distortion guided self-distillation for deep
neural networks,” in AAAI Conf. Artif. Intell., 2019, pp. 5565–5572.

[26] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “Disturblabel:
Regularizing cnn on the loss layer,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2016, pp. 4753–4762.

[27] A. Dubey, O. Gupta, P. Guo, R. Raskar, R. Farrell, and N. Naik, “Pairwise
confusion for fine-grained visual classification,” in Eur. Conf. Comput.
Vis., 2018, pp. 70–86.

[28] C. Li, C. Liu, L. Duan, P. Gao, and K. Zheng, “Reconstruction regularized
deep metric learning for multi-label image classification,” IEEE Trans.
Neural Netw. Learn Syst., vol. 31, no. 7, pp. 2294–2303, 2020.

[29] L. Zhang, G.-J. Qi, L. Wang, and J. Luo, “Aet vs. aed: Unsupervised
representation learning by auto-encoding transformations rather than
data,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 2547–2555.

[30] G.-J. Qi, L. Zhang, F. Lin, and X. Wang, “Learning generalized trans-
formation equivariant representations via autoencoding transformations,”
IEEE Trans. Pattern Anal. Mach. Intell., 2020.

[31] G.-J. Qi, L. Zhang, C. W. Chen, and Q. Tian, “Avt: Unsupervised learning
of transformation equivariant representations by autoencoding variational
transformations,” in Int. Conf. Comput. Vis., 2019, pp. 8130–8139.

[32] X. Wang, D. Kihara, J. Luo, and G.-J. Qi, “Enaet: A self-trained
framework for semi-supervised and supervised learning with ensemble
transformations,” IEEE Trans. Image Process., 2020.

[33] N. Passalis and A. Tefas, “Unsupervised knowledge transfer using
similarity embeddings,” IEEE Trans. Neural Netw. Learn Syst., vol. 30,
no. 3, pp. 946–950, 2019.

[34] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
“Born-again neural networks,” in Int. Conf. Mech. Learn., 2018, pp.
1602–1611.

[35] S. Ge, Z. Luo, C. Zhang, Y. Hua, and D. Tao, “Distilling channels
for efficient deep tracking,” IEEE Trans. Image Process., vol. 29, pp.
2610–2621, 2020.

[36] N. Wang, W. Zhou, Y. Song, C. Ma, and H. Li, “Real-time correlation
tracking via joint model compression and transfer,” IEEE Trans. Image
Process., vol. 29, pp. 6123–6135, 2020.

[37] S. Ge, S. Zhao, C. Li, and J. Li, “Low-resolution face recognition in the
wild via selective knowledge distillation,” IEEE Trans. Image Process.,
vol. 28, no. 4, pp. 2051–2062, 2019.

[38] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang, “Few-shot image
recognition with knowledge transfer,” in Int. Conf. Comput. Vis., 2019,
pp. 441–449.

[39] J. Yao, J. Wang, I. W. Tsang, Y. Zhang, J. Sun, C. Zhang, and R. Zhang,
“Deep learning from noisy image labels with quality embedding,” IEEE
Trans. Image Process., vol. 28, no. 4, pp. 1909–1922, 2019.

[40] J. S. Duncan and T. Birkholzer, “Reinforcement of linear structure using
parametrized relaxation labeling,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 14, no. 5, pp. 502–515, 1992.

[41] R. Wang, T. Liu, and D. Tao, “Multiclass learning with partially corrupted
labels,” IEEE Trans. Neural Netw. Learn Syst., vol. 29, no. 6, pp. 2568–
2580, 2018.

[42] Y. Wei, C. Gong, S. Chen, T. Liu, J. Yang, and D. Tao, “Harnessing side
information for classification under label noise,” IEEE Trans. Neural
Netw. Learn Syst., vol. 31, no. 9, pp. 3178–3192, 2020.

[43] B. Han, I. W. Tsang, L. Chen, C. P. Yu, and S. Fung, “Progressive
stochastic learning for noisy labels,” IEEE Trans. Neural Netw. Learn
Syst., vol. 29, no. 10, pp. 5136–5148, 2018.

[44] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization
framework for learning with noisy labels,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2018, pp. 5552–5560.

[45] J. Han, P. Luo, and X. Wang, “Deep self-learning from noisy labels,” in
Int. Conf. Comput. Vis., 2019, pp. 5138–5147.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[46] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight
examples for robust deep learning,” in Int. Conf. Mech. Learn., 2018,
pp. 4334–4343.

[47] J. Shu, Q. Xie, L. Yi, Q. Zhao, S. Zhou, Z. Xu, and D. Meng, “Meta-
weight-net: Learning an explicit mapping for sample weighting,” in Adv.
Neural Inform. Process. Syst., 2019, pp. 1919–1930.

[48] T. Liu and D. Tao, “Classification with noisy labels by importance
reweighting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 3, pp.
447–461, 2015.

[49] Y. Wang, X. Ma, Z. Chen, Y. Luo, J. Yi, and J. Bailey, “Symmetric cross
entropy for robust learning with noisy labels,” in Int. Conf. Comput. Vis.,
2019, pp. 322–330.

[50] R. Tanno, A. Saeedi, S. Sankaranarayanan, D. C. Alexander, and
N. Silberman, “Learning from noisy labels by regularized estimation of
annotator confusion,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019,
pp. 11 236–11 245.

[51] E. Arazo, D. Ortego, P. Albert, N. O’Connor, and K. Mcguinness,
“Unsupervised label noise modeling and loss correction,” in Int. Conf.
Mech. Learn., 2019, pp. 312–321.

[52] J. Zhang, V. S. Sheng, T. Li, and X. Wu, “Improving crowdsourced label
quality using noise correction,” IEEE Trans. Neural Netw. Learn Syst.,
vol. 29, no. 5, pp. 1675–1688, 2018.

[53] M. Fang, T. Zhou, J. Yin, Y. Wang, and D. Tao, “Data subset selection
with imperfect multiple labels,” IEEE Trans. Neural Netw. Learn Syst.,
vol. 30, no. 7, pp. 2212–2221, 2019.

[54] K. Yi and J. Wu, “Probabilistic end-to-end noise correction for learning
with noisy labels,” in IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp.
7017–7025.

[55] R. Müller, S. Kornblith, and G. E. Hinton, “When does label smoothing
help?” in Adv. Neural Inform. Process. Syst., 2019, pp. 4696–4705.

[56] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, pp. 2579–2605, 2008.

[57] L. Yuan, F. E. Tay, G. Li, T. Wang, and J. Feng, “Revisiting knowledge
distillation via label smoothing regularization,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2020, pp. 3903–3911.

[58] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in Adv. Neural Inform. Process. Syst. Worksh., 2017.

[59] A. Iscen, G. Tolias, P. Gosselin, and H. Jégou, “A comparison of dense
region detectors for image search and fine-grained classification,” IEEE
Trans. Image Process., vol. 24, no. 8, pp. 2369–2381, 2015.

[60] C. Zhang, C. Liang, L. Li, J. Liu, Q. Huang, and Q. Tian, “Fine-grained
image classification via low-rank sparse coding with general and class-
specific codebooks,” IEEE Trans. Neural Netw. Learn Syst., vol. 28,
no. 7, pp. 1550–1559, 2017.

[61] Y. Zhang, X. Wei, J. Wu, J. Cai, J. Lu, V. Nguyen, and M. N. Do,
“Weakly supervised fine-grained categorization with part-based image
representation,” IEEE Trans. Image Process., vol. 25, no. 4, pp. 1713–
1725, 2016.

[62] W. Shi, Y. Gong, X. Tao, D. Cheng, and N. Zheng, “Fine-grained image
classification using modified dcnns trained by cascaded softmax and
generalized large-margin losses,” IEEE Trans. Neural Netw. Learn Syst.,
vol. 30, no. 3, pp. 683–694, 2019.

[63] X. Shu, J. Tang, G.-J. Qi, Z. Li, Y.-G. Jiang, and S. Yan, “Image
classification with tailored fine-grained dictionaries,” IEEE Trans. Circuit
Syst. Video Technol., vol. 28, no. 2, pp. 454–467, 2016.

[64] Y. Peng, X. He, and J. Zhao, “Object-part attention model for fine-grained
image classification,” IEEE Trans. Image Process., vol. 27, no. 3, pp.
1487–1500, 2018.

[65] H. Zheng, J. Fu, Z. Zha, J. Luo, and T. Mei, “Learning rich part
hierarchies with progressive attention networks for fine-grained image
recognition,” IEEE Trans. Image Process., vol. 29, pp. 476–488, 2020.

[66] T. Lin, A. RoyChowdhury, and S. Maji, “Bilinear convolutional neural
networks for fine-grained visual recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 6, pp. 1309–1322, 2018.

[67] T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang, “Learning from massive
noisy labeled data for image classification,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2015, pp. 2691–2699.

[68] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” in Int. Conf. Learn.
Represent., 2017.

[69] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Int. Conf. Learn. Represent., 2015.

[70] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in Int. Conf. Learn. Represent., 2017.

[71] J. C. Peterson, R. M. Battleday, T. L. Griffiths, and O. Russakovsky,
“Human uncertainty makes classification more robust,” in Int. Conf.
Comput. Vis., 2019, pp. 9616–9625.

[72] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE Conf. Comput. Vis.
Pattern Recog., 2016, pp. 779–788.

[73] F. Fang, L. Li, H. Zhu, and J. Lim, “Combining faster r-cnn and model-
driven clustering for elongated object detection,” IEEE Trans. Image
Process., vol. 29, pp. 2052–2065, 2020.

[74] F. Sun, T. Kong, W. Huang, C. Tan, B. Fang, and H. Liu, “Feature
pyramid reconfiguration with consistent loss for object detection,” IEEE
Trans. Image Process., vol. 28, no. 10, pp. 5041–5051, 2019.

[75] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017.

[76] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Eur. Conf. Comput.
Vis., 2016, pp. 21–37.

[77] Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-
stage object detection,” in Int. Conf. Comput. Vis., 2019, pp. 9627–9636.

[78] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” Int. J. Comput. Vis.,
vol. 88, no. 2, pp. 303–338, 2010.

[79] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of
modern neural networks,” in Int. Conf. Mech. Learn., 2017, pp. 1321–
1330.

Chang-Bin Zhang is a master student from the
College of Computer Science at Nankai University,
under the supervision of Prof. Ming-Ming Cheng.
Before that, he received a bachelor degree from China
University of Mining and Technology in 2019. His
research interests include deep learning and computer
vision.

Peng-Tao Jiang is a Ph.D. student from the College
of Computer Science at Nankai University, under
the supervision of Prof. Ming-Ming Cheng. Before
that, he received a bachelor degree from Xidian
University in 2017. His research interests include
weakly supervised tasks and model interpretability.

Qibin Hou received his Ph.D. degree from School
of Computer Science, Nankai University, under the
supervision of Prof. Ming-Ming Cheng. Currently, he
is a research fellow working with Prof. Jiashi Feng
at the National University of Singapore. His research
interests include deep learning, image processing,
and computer vision.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Yunchao Wei is currently an Assistant Professor at
the University of Technology Sydney. He received
his PhD degree from Beijing Jiaotong University in
2016. Before joining UTS, he was a Postdoc Re-
searcher in Prof. Thomas Huang’s Image Formation
and Professing (IFP) group at Beckman Institute,
UIUC, from 2017 to 2019. His research interests
mainly include Deep learning and its applications in
computer vision, e.g., image classification, learning
with imperfect data.

Qi Han is a master student from the College of
Computer Science, Nankai University, under the
supervision of Prof. Ming-Ming Cheng. He received
his bachelor degree from Xidian University in 2019.
His research interests include deep learning and
computer vision.

Zhen Li is currently working toward the PhD
degree in the College of Computer Science, Nankai
University, under the supervision of Prof. Ming-Ming
Cheng. He received his MS degree from Sichuan
University in 2019. His research interests include
efficient learning and image restoration.

Ming-Ming Cheng received his PhD degree from
Tsinghua University in 2012. Then he did 2 years
research fellow, with Prof. Philip Torr in Oxford. He
is now a professor at Nankai University, leading the
Media Computing Lab. His research interests include
computer graphics, computer vision, and image
processing. He received research awards including
ACM China Rising Star Award, IBM Global SUR
Award, CCF-Intel Young Faculty Researcher Program.
He is on the editorial boards of IEEE TIP.

	Introduction
	Related Work
	Method
	Preliminaries
	Online Label Smoothing

	Discussion
	Experiments
	General Image Recognition
	Tolerance to Noisy Labels
	Robustness to Adversarial Attacks
	Object Detection
	Ablation Study

	Conclusion
	References
	Biographies
	Chang-Bin Zhang
	Peng-Tao Jiang
	Qibin Hou
	Yunchao Wei
	Qi Han
	Zhen Li
	Ming-Ming Cheng

