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RF-Next: Efficient Receptive Field Search for
Convolutional Neural Networks

Shanghua Gao Zhong-Yu Li Qi Han Ming-Ming Cheng Liang Wang

Abstract—Temporal/spatial receptive fields of models play an important role in sequential/spatial tasks. Large receptive fields facilitate
long-term relations, while small receptive fields help to capture the local details. Existing methods construct models with hand-designed
receptive fields in layers. Can we effectively search for receptive field combinations to replace hand-designed patterns? To answer
this question, we propose to find better receptive field combinations through a global-to-local search scheme. Our search scheme
exploits both global search to find the coarse combinations and local search to get the refined receptive field combinations further. The
global search finds possible coarse combinations other than human-designed patterns. On top of the global search, we propose an
expectation-guided iterative local search scheme to refine combinations effectively. Our RF-Next models, plugging receptive field search
to various models, boost the performance on many tasks, e.g., temporal action segmentation, object detection, instance segmentation,
and speech synthesis. The source code is publicly available on http://mmcheng.net/rfnext.

Index Terms—dilation, receptive field, spatial convolutional network, temporal convolutional network, temporal action segmentation
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1 INTRODUCTION

Due to the strong representation ability, convolutional neural
networks (CNN) have been widely used in spatially visual recogni-
tion tasks, e.g., object detection [2], saliency detection [3], instance
segmentation [4], and semantic segmentation [5], [6], as well as
sequential perception tasks, e.g., temporal action segmentation [7],
[8], and speech synthesis [9], [10]. CNN processes short/long-
term features by stacking convolutional filters with different re-
ceptive fields. Spatial convolutional networks (SCN) for visual
recognition tasks process local and global features to represent
the texture and semantic information. Temporal convolutional
networks (TCN) [7], [11]–[14] are widely adopted in sequential
tasks with their ability to capture both long-term and short-term
information. Appropriate receptive fields in layers are crucial
for both SCN and TCN as large receptive fields contribute to
long-term dependencies while small receptive fields benefit the
local details. State-of-the-art (SOTA) SCN [2], [4], [15]–[17] and
TCN [7], [8], [13], [18], [19] methods rely on human-designed
receptive field combinations, i.e., dilation rate or pooling size in
each layer, to make the trade-off between capturing long and short
term dependencies. Questions have been raised: Are there other
effective receptive field combinations that perform comparable or
better than hand-designed patterns? Will the receptive field combi-
nations vary among different datasets? To answer those questions,
we propose to find the possible receptive field combinations in a
coarse-to-fine scheme through the global-to-local search.

As shown in Fig. 1, unlike the existing network architec-
ture search spaces [20]–[22] that only contain several operation
options within a layer, the available search space of receptive
field combinations could be huge. Suppose a TCN/SCN has L
convolutional layers and D possible receptive fields in each layer,
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Fig. 1. Search space comparison between searching for network ar-
chitecture and receptive field combinations. Left: Network architecture
search mostly searches for several operations with different functions.
Right: The search space of receptive field combinations is huge. The
white, green, blue nodes, and orange shade represent the dilation rate
candidates, the sparse search space in global search, one of the global
searched results, and the local search space, respectively.

there are DL possible combinations, i.e., the MS-TCN [12] for
the long-sequence temporal action segmentation task, consisting
of 40 layers and 1024 possible receptive fields in each layer, has
102440 possible receptive field combinations. Directly applying
network architecture searching algorithms [20], [22]–[24] to such
a huge search space is impractical. For example, conventional
reward-based searching methods [24]–[26] are unsuitable for
CNN-based models with a huge search space. The model training
and performance evaluation of each possible combination are too
costly. Differentiable architecture searching methods (DARTS)
[20], [21], [23] rely on shared big networks to save training time,
thus only supporting several operators within a layer due to the
constraint of model size. Moreover, they are heavily dependent on
the initial combination and fail to find new combinations with a
huge difference from the initial one. While our goal is to explore
effective receptive field combinations other than human-designed
patterns in the huge search space, those algorithms are either too
costly or cannot support the large search space.

To explore the effective receptive fields with a low cost, we
exploit both a genetic-based global search to find the coarse

http://mmcheng.net/rfnext
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receptive field combinations and an expectation-guided iterative
(EGI) local search to get the refined combinations. Specifically,
we follow common settings in many existing methods [5], [12],
[27], [28] to use dilation rates to determine layers’ receptive
fields. A genetic-based global search scheme is proposed to find
coarse combinations within a sparsely sampled search space at an
affordable cost. The global search discovers various combinations
that achieve even better performance than human designings but
have completely different patterns. Based on the global-searched
coarse combinations, we propose the local search to determine
fine-grained dilation rates. In local search, a convolutional weight-
sharing scheme enforces learned dilation coefficients to approxi-
mate the probability mass distribution for calculating the expecta-
tion of dilation rates. The expectation-guided searching transfers
the discrete dilation rates into a distribution, allowing fine-grained
dilation rates search. With an iterative searching process, the local
search gradually finds more effective fine-grained receptive field
combinations with a low cost. Models enhanced by our proposed
global-to-local search scheme, namely RF-Next models, surpass
human-designed structures with impressive performance gain on
many tasks. In summary, we make two major contributions:

• The expectation-guided iterative local search scheme en-
ables searching fine-grained receptive field combinations
in the dense search space.

• The global-to-local search discovers effective receptive
field combinations with better performance than hand-
designed patterns.

The conference version [1] mainly explores the proposed
receptive field searching scheme on the temporal action segmen-
tation task. In this work, we improve and give more analysis of
our proposed searching scheme, i.e., parallel receptive fields for
multi-scale enhancement, searching cost analysis, generalization
to different tasks, observations of receptive fields. We generalize
our proposed receptive field searching method to multiple tasks
on both temporal and spatial dimensions, i.e., speech synthesis,
sequence modeling, instance segmentation, object detection, and
semantic segmentation. To meet the multi-scale requirements of
some tasks, we take advantage of the proposed expectation-guide
search scheme to enable the searched structure with parallel mul-
tiple receptive fields and shared convolutional weights. We give
observations on the receptive field requirements of multiple tasks
based on the searched results: 1) Proper receptive fields of CNN
are beneficial to many tasks. 2) The receptive field requirements
of different parts of the network are quite different.

2 RELATED WORK

2.1 Receptive Field in Networks
The effect of receptive fields has been widely studied [29]–
[34]. Although the theoretical receptive field could be huge, [29]
shows that the effective receptive field occupies a fraction of
the theoretical receptive field. [30] assumes that useful predictive
information for a pixel comes from nearby locations rather than
far pixels and proposes to gradually suppress the distant pixel
values with the scale-sensitive regularization. [35] enlarges the
receptive field to improve the performance of the image super-
resolution task. [31] observes that model depth must be congruent
with the receptive field size for the image super-resolution task.
[34] forms continuous receptive fields with the help of Gaussian
scale-space representation. Parallel receptive fields are proposed

to enable a more flexible receptive field within a layer [32],
[33], [36]. Inception net series [36]–[38] explores the parallel
asymmetric convolutions with different receptive fields to enhance
the model representation ability. Atrous spatial pyramid mod-
ules [5], [32] prove the effectiveness of parallel receptive fields in
semantic segmentation. OctConv [33] decomposes the convolution
to process two feature scales simultaneously. Some works model
the connections of all positions to form arbitrary receptive fields
theoretically [39]–[41]. Multi-head attention is presented by [39]
to model the relation between every two pixels with attention
mechanisms. Similarly, [40] utilizes the non-local operation to
aggregate features at all positions. A graph-based global reasoning
module [41] is proposed to capture relations between arbitrary
regions. Despite these methods exploring receptive fields’ great
potential, choosing effective receptive fields for different tasks is
still an open question.

2.2 Sequential Tasks

Sequential tasks process data in the form of sequences, e.g., video
stream and audio stream. As the sequence length could have a
large variance for sequential tasks, models with a proper range
of effective receptive fields are needed. In this work, we mainly
tackle two sequential tasks with long sequences of data, i.e., tem-
poral action segmentation and speech synthesis, which represent
video and audio dimensions, respectively.

2.2.1 Temporal Action Segmentation

Temporal action recognition segments the action of each video
frame, playing an important role in computer vision applica-
tions such as clips tagging [42], video surveillance [43], [44],
and anomaly detection [45]. While conventional works [46]–[49]
have continuously refreshed the recognition performance of short
trimmed videos containing a single activity, segmenting each
frame densely in long untrimmed videos remains challenging
as those videos contain many activities with different temporal
lengths. In this work, we do our major experiments on the
temporal action segmentation task. Therefore, we give a thorough
introduction to related works for the temporal action segmentation
task.

Many approaches have been proposed for modeling depen-
dencies for temporal action segmentation. Early works [50]–[52]
mostly model the changing state of appearance and actions with
sliding windows [53]–[55]. Thus they mainly focus on short-
term dependencies. Capturing both short-term and long-term de-
pendencies then gradually becomes the focus of temporal action
segmentation.

Sequential Model. Sequential models capture long-short term
dependencies in an iterative form. Vo and Bobick [56] apply the
Bayes network to segment actions represented by a stochastic
context-free grammar. Tang et al. [57] use a hidden Markov model
to model transitions between states and durations. Later, hidden
Markov models are combined with context-free grammar [58],
Gaussian mixture model [59], and recurrent networks [60], [61] to
model long-term action dependencies. Cheng et al. [62] apply the
sequence memorizer to capture long-range dependencies in visual
words learned from the video. However, these sequential models
are inflexible in parallelly modeling long-term dependencies and
usually suffer from information forgetting [7], [12].



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Multi-stream Architecture. Some researchers [63]–[66] utilize
multi-stream models to model dependencies from long and short
term. Richard and Gall employ [63] dynamic programming to
inference models composed of length model, language model,
and action classifier. Singh et al. [64] learn short video chunks
representation with a two-stream network and pass these chunks
to a bi-directional network to predict temporal action segmenta-
tion results sequentially. A three-stream architecture is proposed
in [65], which contains egocentric cues, spatial and temporal
streams. Tricornet [66] utilizes a hybrid temporal convolutional
and recurrent network to capture local motion and memorize
long-term action dependencies. CoupledGAN [67] uses a GAN
model to utilize multi-modal data to better model human actions’
evolution. Capturing long-short term information with multiple
streams increases computational redundancy.

Temporal Convolutional Network. Recently, temporal convolu-
tional networks (TCN) have been introduced to model dependen-
cies of different ranges within a unified structure by adjusting
receptive fields and can process long videos in parallel. Lea et
al. [11] propose the encoder-decoder style TCN for the tempo-
ral action segmentation to capture long-range temporal patterns
and apply the dilated convolution to enlarge the receptive field.
TDRN [68] further introduces the deformable convolution to
process the full-resolution residual stream and low-resolution
pooled stream. MS-TCN [7], [12] utilizes multi-stage dilated
TCNs with hand-designed dilation rate combinations to capture
information from various temporal receptive fields. However, the
adjustment of receptive fields still relies on human design, which
may not be appropriate. Our proposed efficient receptive field
combinations searching scheme can automatically discover more
efficient structures, improving these TCN based methods.

Complementary Techniques. Instead of capturing long-term and
short-term information, some works [13], [69] further improve
the temporal action segmentation performance with boundary
refinement. Li et al. [69] utilize an iterative training procedure
with transcript refinement and soft boundary assignment. Wang et
al. [13] leverage semantic boundary information to refine the
prediction results. Other researchers focus on temporal action
segmentation under the weakly supervised [59], [60], [69], or
unsupervised [70] settings. These works still rely on the efficient
TCN to model the action dependencies, thus complementing the
proposed method.

2.2.2 Speech Synthesis

Speech synthesis, also known as text to speech (TTS), aims to
synthesize human-like natural speech from text [71], [72], which
has thrived due to the strong feature representation ability of the
neural networks [9], [10], [27], [73]. The large difference in
modality and feature-length between text and speech makes it
hard to implement TTS in an end-to-end style [74]. Therefore,
common approaches for speech synthesis decompose this process
into the following steps: 1) text-to-linguistic features transforma-
tion [75], [76]. 2) transfer linguistic features or text to acoustic
features [10], [77]–[79]. 3) generate the final speech waveform
using the acoustic features [9], [27], [28], [73]. During the process,
features are transformed from the short-length text sequence to
the long-length acoustic features and speech waveform, i.e., text
with about 20 words results in a 5-second speech sequence of 80k

sampling points. We tackle the challenge of transferring acoustic
features to speech waveform, as this procedure requires a suitable
receptive field to model the short/long-term dependencies in the
waveform [27], [74]. Since we only focus on the receptive field of
TTS models, we refer readers to the survey [74] for more details
of speech synthesis.

2.3 Spatial Tasks

Unlike the sequential tasks that mostly process one-dimension
sequences, spatial tasks process images with two dimensions,
i.e., height and width dimensions. To extract features of objects
of various sizes in the scene, the model needs small receptive
fields to detect small objects and large receptive fields to cover
large objects or capture surrounding context information [16]. We
mainly tackle two popular vision tasks with the proposed receptive
field search, i.e., object detection and instance segmentation.

2.3.1 Object Detection
Object detection aims to localize objects with bounding boxes and
assign categories accordingly [80]–[84]. Common object detection
methods can be divided into single-stage [81], [82], [85]–[87]
and two-stage [2], [88], [89] pipelines. More details about object
detection can be referred to related surveys [90]–[92]. Single-
stage detectors, e.g., SSD [85], YOLO [86], and CornerNet [87],
require one inference to end-to-end localize and categorize objects,
which are effective in latency but hard to cover all objects. Two-
stage methods, e.g., R-CNN [93], Faster-RCNN [2], and Cascade
R-CNN [88], decompose object detection into region proposals
generation and objects detection from the proposal, enhancing the
detection quality at the cost of slow inference speed. Despite the
difference, object detectors tend to enhance the multi-scale ability
to handle objects of various sizes [2], [85], [88], [89]. SSD [85]
merges features from multiple stages to detect objects. Faster-
RCNN [2] utilizes a feature pyramid network to aggregate features
with multiple scales. Cascade R-CNN [88] and HTC [89] perform
cascaded multi-stage feature fusion and refinement. We show that
the proper receptive field settings for these methods can further
improve the detection ability.

2.3.2 Instance Segmentation
Instance segmentation aims to assign category labels to each
pixel of instances [94]–[96], which is similar to object detec-
tion as they both require localizing objects. Therefore, common
instance segmentation methods add the segmentation branch on
object detectors to segment instances from the bounding boxes,
i.e., Mask-RCNN [4] extends Faster-RCNN by adding an object
mask predicting branch. The multi-scale ability in object detectors,
e.g., Cascade R-CNN [88] and HTC [89], is naturally inherited
to the instance segmentation. Some works focus on refining the
boundary of segmentation masks [97]–[101], which still rely on
feature extractors with proper receptive fields. We observe that
the receptive field search benefits the performance of instance
segmentation.

2.4 Network Architecture Search

The genetic algorithm [102] has achieved remarkable performance
on a wide range of applications. Many genetic-based methods
have been recently introduced for the neural networks architecture
search of vision tasks [24]–[26], [103], [104]. An evolutionary
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coding scheme is proposed in Genetic CNN [24] to encode the net-
work architecture to a binary string. A hierarchical representation
is presented by Liu et al. [26] to constrain the search space. Real et
al. [25] regularize the evolution by an age property selection
operation. Sun et al. [103] introduce a variable-length encoding
method for effective architecture designing. However, the genetic
algorithm requires the training of each candidate, consuming too
much computational cost when faced with a huge search space.

Differentiable architecture search [20], [23], [105]–[108] saves
the training time by introducing a large network containing
subnetworks with different searching options. The importance of
searched blocks is determined by gradient backpropagation [109].
However, these network architecture search methods are designed
for finding a limited number of operations such as convolution,
ReLU, batch normalization, short connection, etc. Thus, these
methods cannot be directly used for receptive field search due
to the different searching targets, e.g., they cannot handle the
huge receptive field combinations search space. Fair DARTS [105]
solves the problem of performance collapse due to the unfair
advantage in exclusive competition between different operators.
The receptive field searching has no such problem as it contains
the same operation. [106] reduces the memory cost of supernet by
randomly sampling a proportion of channels for operation search
and bypassing the held out part in a shortcut. This approach is
unsuitable for receptive field search as the shortcut does not belong
to the receptive field search space. [107] conducts channel number
and feature resolution searching with a masking mechanism for
feature map reuse. The masking mechanism for feature map reuse
cannot be applied to the receptive field search represented by
dilation rate because different dilation rates do not belong to
each other and cannot be chosen with different masks. [108]
narrows the performance gap between models searched from a
small dataset and evaluated on the large dataset. Theoretically,
[108] is orthogonal to receptive field search space. However, the
high efficiency of the proposed local search allows to directly
search on the large dataset instead of on a small dataset. In this
paper, we propose a global search to handle the huge search
space with sparse sampling. The expectation-guided iterative local
search then transfers the sparse search space of receptive fields
into the dense one for fine-level searching.

This differentiable search idea is further extended [110] to deal
with semantic segmentation [23], [111], and other tasks beyond
image classification [21]. Auto-deeplab [23] and DCNAS [111]
focus on searching the feature resolution for different stages of
the semantic segmentation network. We show that our proposed
receptive field searching scheme can find better receptive fields on
these searched segmentation networks.

3 METHOD

The pipeline of our proposed global-to-local search method has
two components: (i) a genetic-based global search algorithm that
produces coarse but competitive combinations of the receptive
fields; (ii) an expectation-guided iterative local search scheme that
locally refines the global-searched coarse structures.

3.1 Description
Our objective is to efficiently search for optimal receptive field
combinations for the given dataset. The receptive field can be
represented in multiple forms: the dilation rate, kernel size, pool-
ing size, stride, and the stack number of layers. Our method is

initially designed for temporal action segmentation. We mainly
follow the MS-TCN [12] to formulate the receptive fields using
the combinations of dilation rates in layers and propose to evolve
these combinations during the searching process. Other receptive
field representations can also be applied to the proposed global-
to-local search with minor adjustments. Though we conduct major
experiments on the temporal action segmentation task, our recep-
tive field searching method can easily be generalized to new tasks,
as introduced in Sec. 3.4.

Suppose a TCN has L convolutional layers and D =
{d1, d2, ..., dN } is the possible dilation-rates/receptive-fields in
each layer. The combination of receptive fields is represented with
C = {c1, ..., cl, ..., cL}, where l ∈ [1, L] is the index of layers with
dilated convolutions, and cl ∈ D is the receptive field of each
layer. There are |D|L possible combinations of receptive fields,
i.e., the possible receptive field combinations in MS-TCN [12]
is 102440 when dilation rates range from 1 to 1024. Directly
searching for effective combinations in such a large search space
is impractical. We thus decompose the searching process into the
global and local search to find the combination in a coarse-to-fine
manner.

3.2 Global Search
The global search aims to find possible coarse receptive field
combinations in the huge search space that are very different
from human-designed structures, focusing more on discovering
new structures with large diversity to human-designings instead
of performance. To guarantee the diversity of new structures,
we utilize the random sparse sampling strategy and apply a
generic algorithm with the random crossover and random mutation
specifically designed for receptive fields.

Population initialization with gradually sparse sampling. The
objective of the global search is to find the coarse receptive
field combinations at an affordable cost. Therefore, we reduce
the search space by sparsely sampling the dilation rates within
layers. Multiple sparse discrete sampling strategies such as uni-
form sampling, gradually sparse sampling, and gradually dense
sampling can be applied to sparse the search space. Because small
receptive fields benefit the extraction of precise local details, and
large receptive fields contribute to coarse long-term dependencies.
A gradually sparse sampling scheme from small to large dilation
rates is appropriate for common tasks, e.g., temporal action seg-
mentation. Therefore, we formulate the receptive field space in
global search as:

Dg = {di = ki, i ∈ [0, 1, · · · T ]}, (1)

where k is the controller of the search space sparsity, and T
determines the largest receptive field. With the same maximum
receptive field, |Dg| ≪ |D|, the search space is greatly reduced.
i.e., when set k = 2, and set the maximum receptive field to 1024
as in MS-TCN, the search space is reduced from 102440 to 1140.
The population of receptive field combinations can be described
as a group of candidate structures P = {Ci, i ∈ [1, M ]}, where
Ci is the candidate structure in the global search space, and M is
the number of individuals in the population.

However, the reduced space of receptive field combinations
can still be huge, and unaffordable for a brute force search. We
propose a genetic algorithm [102] based method to find coarse
combinations that are competitive or even better than human
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Fig. 2. Illustration of one iteration in our genetic-based global search algorithm. Step1. Gradually sparse random sampling initial receptive field
combinations; Step2. Crossover between segments of the receptive field combinations; Step3. Randomly mutating the receptive fields to generate
new individuals; Step4. Selecting individuals for the next iteration based on estimated performance of models trained with early stopping strategy.

designing. We now detail the selection, crossover, and mutation
process within our proposed global search method.

Selection according to early stopped training. We need to select
samples from the population of receptive field combinations P for
each iteration. The selection operation selects individuals to be
kept in P based on the estimated performance of each structure
Ci, denoted by E(Ci):

E(Ci) = f(V |Ci, θn), (2)

where f(·) is the task-specific evaluation metrics on the validation
set V , e.g., frame-wise accuracy for temporal action segmentation,
θn is a model trained with n epochs. The major cost of the global
search is the performance evaluation of candidate structures.
The global search aims to find coarse structures and reasonable
performance, allowing searched structures to have sub-optimal
performance. Also, we observe the receptive field combinations
play a key role in the model convergence, i.e., a model with good
receptive fields converges much faster than a model equipped with
bad receptive fields. To reduce evaluation cost, we choose to early
stop the training of candidate structures when the trained models
can roughly show the relative performance gap of different struc-
tures, e.g., training MS-TCN for 5 epochs can reflect the structure
performance. The early stop training strategy substantially reduces
the structure evaluation cost.

Crossover between segments of the receptive field combi-
nation. This operation generates new samples of receptive field
combinations. Every two combinations in the population are ex-
changed to bear new patterns of the combination while maintain-
ing the local structures. Each Ci will be selected for the crossover
operation with probability p(Ci):

p(Ci) = E(Ci)∑M
i E(Ci)

. (3)

Since the representation ability lies in the combination patterns,
we want to reserve the local combination patterns during the
crossover. Instead of randomly exchanging individual points,
we choose to exchange random segments of the receptive field
combination. Specifically, we randomly choose two anchors and
exchange receptive field combination segments within two anchors
to generate new samples.

Random receptive field mutation. The mutation operation avoids
getting stuck in local optimal results by choosing an individual
with pre-defined probability pm ∈ [0, 1] and randomly changes
each value within the selected combination with pre-defined prob-
ability ps ∈ [0, 1]. To reduce the searching cost, we also apply the

gradually sparse sampling strategy when choosing a new receptive
field value.

Algorithm 1 Global Search.
Input: Iterations N , training epoch n, mutation probability pm,

and population size M ;
Gradually sparse random sampling initial receptive field com-
binations P ;
for iter in [1, N ] do

Selecting individuals for the crossover with the probability
obtained with estimated performance in Equ. (3);

Crossover between random segments of every two selected
receptive field combinations;

Randomly choose combinations with probability pm, and
mutate the receptive fields with probability ps within sparse
sampling search space to generate new individuals;

Training each individual with early stopped n epochs to save
evaluation cost;

Selecting the top M individuals based on estimated perfor-
mance in Equ. (2) as the new population P ;
end for
return P .

The global search process can be summarised as Algo-
rithm (1), and the illustration of one iteration in global search is
given in Fig. 2. With the coarse search space and the global search
method, we can find receptive field combinations with different
patterns than human-designed structures while having similar or
even better performance. We further propose the local search to
locally find the more efficient combinations on top of the global-
searched structures. We show in Tab. 5(b) that local search heavily
relies on the initial structure, revealing the importance of global
search.

3.3 Expectation-Guided Iterative Local Search

The local search aims to find more efficient receptive field com-
binations at a fine-grained level at a low cost. A naive approach
is to sample finer-grained dilation rates near the initial dilation
rate searched by the global search and apply existing DARTS
algorithms [20], [21] to choose the proper one. However, even
with the good initial structure provided by the global search, the
available range of fine-grained dilation rates is still large. Existing
search algorithms are designed to search sparse operators with
several choices in each layer, thus can not handle dilation rates
with hundreds of choices. While too sparsely sampling conflicts
with our goal of searching for the finer-grained receptive fields.
Also, DARTS methods search operators with different functional-
ity [20], while the searching on receptive fields only contains one
functional dimension. Different subsets in the dataset sometimes
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Fig. 3. The approximated probability mass function of dilation rates is
determined by the multi-dilated convolutional layer with shared convolu-
tional weights. di is the dilation rate, and αi is the PMF in Equ. (4).

prefer different searching options. Searching within a functional
dimension enables us to determine dilation rates with the expec-
tation of all subsets instead of choosing the option required by
one majority subset. Therefore, we propose an expectation-guided
iterative (EGI) local search scheme to determine the finer-level
dilation rates on top of the global-searched structures.

Suppose that the receptive field of a layer l is Dl. For a
dataset, once we get the probability mass distribution of dilation
rates around Dl, we can obtain the expected dilation rate with
the weighted average of the dilation rates required by all subsets.
However, the probability mass of dilation rates for the dataset
is inaccessible. Therefore, we utilize a convolutional weight-
sharing scheme to enforce the learned importance coefficients
of dilation rates to approximate the probability mass. To get
the approximated probability mass function of dilation rates,
we first evenly sample S dilation rates near the initial dilation
rate Dl within the range of [Dl ± ∆Dl]. The set of available
dilation rates within this layer is Tl = {di|i ∈ [1, S]}, where
di = Dl−∆Dl+(i−1)·2∆Dl/(S−1). ∆Dl is the finer controller
of the search space that results in a more dense sampling than that
of the global search.

Algorithm 2 Expectation-Guided Iterative Local Search.
Input: Iterations N , initial receptive fields D;

Initialize model using given D;
for iter in [1, N ] do

Construct Tl for each layer based on D and initialize W
with the same value;

Train model to get the PMF in Equ. (4);
Obtain new dilation rates through Equ. (6);
Update D;

end for
return local-searched D.

With the dilation rates set Tl, we propose a multi-dilated
layer composed of a shared convolutional weight and multiple
branches with different dilation rates, as shown in Fig. 3. Each
branch has a unique coefficient to determine the importance of
the dilation rate. During the searching process, the coefficients are
updated with the gradient backpropagation to reflect the receptive
field requirements of the dataset. Existing DARTS schemes [20],
[110] have separated operator weights in each branch. In contrast,
our convolutional weight-sharing strategy forces the model to

Output

Input
Fig. 4. Visualization of receptive field combinations changes during the
EGI local searching process.

learn the approximated probability of receptive fields and ease
the model convergence. Specifically, the dilation rates in the
multi-dilated convolutional layer are set to Tl. Apart from the
shared convolutional θ, the multi-dilated layer contains coefficient
W = {w1, w2, ..., wi, i ∈ [1, S]} to determine the importance of
the dilation rates. Both θ and W are learnable parameters and can
be trained with gradient backpropagation. For each iteration, each
value in W is reinitialized with the same initial value.

W is unbounded, thus cannot be directly used to determine
the dilation rates probability. Therefore, we propose a normaliza-
tion function to get the approximated probability mass function
PMF (di) of dilation rates through normalizing wi:

PMF (di) = αi = |wi|∑S
i |wi|

. (4)

With the probability mass function, given the input feature x, the
output y of the multi-dilated convolutional layer can be written as
follows:

y =
S∑
i

αiΨ(x, di, θ), (5)

where Ψ(x, di, θ) is the convolutional operation with the shared
convolutional weight θ and dilation rate di. αi is updated with gra-
dient optimization. Once we get the probability mass function, the
newly searched dilation rate D

′

l is obtained with the expectation:

D
′

l = ⌊
∑

di∈Tl

PMF (di) · di⌋. (6)

To reduce the computational cost during the local search process,
we reduce the number of dilation rates in Tl to 3 by default and
apply the iterative search scheme to find the more suitable dilation
rate based on the D

′

l from the last iteration. The local search
process can be summarised as Algorithm (2). Furthermore, Fig. 4
visualizes the dilation rates changes during the local searching
process.

Parallel receptive fields for multi-scale enhancement. The local
search results in one dilation rate for each convolution. However,
we observe that some spatial tasks, e.g., instance segmentation and
object detection, require the parallel multi-scale ability to process
small and large objects in the senses. Our expectation-guided
local search scheme can provide the parallel multi-scale ability
with different dilation rates and shared convolutional weights.
Therefore, we extend the local-searched structure to the parallel
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TABLE 1
Performance of the global and local searching stages of our global-to-local searching method using MS-TCN [12] as the baseline. The global

search finds new receptive field combinations that are better than baseline. Local search further refines the global searched structures to achieve
better performance.

BreakFast 50Salads GTEA
F@0.1 F@0.25 F@0.5 Edit Acc F@0.1 F@0.25 F@0.5 Edit Acc F@0.1 F@0.25 F@0.5 Edit Acc

MS-TCN [12] 52.6 48.1 37.9 61.7 66.3 76.3 74.0 64.5 67.9 80.7 87.5 85.4 74.6 81.4 79.2
Reproduce 69.1 63.7 50.1 69.9 67.3 78.8 75.3 64.4 71.4 77.8 87.1 83.6 70.4 81.1 75.5
Global 72.2 66.0 51.5 71.0 69.2 79.3 76.5 68.1 71.9 81.2 89.1 87.1 74.4 84.2 78.6
Global+Local 74.9 69.0 55.2 73.3 70.7 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5

TABLE 2
Details of three temporal action segmentation datasets. #Cls and #Vid

are the numbers of classes and videos, respectively. #Frame is the
average frame of videos.

#Cls #Vid #Frame Scene

GTEA [52] 11 28 1115 daily activities
50Salads [112] 17 50 11552 preparing salads
BreakFast [113] 48 1712 2097 cooking breakfast

version by keeping the dilation rates in Tl instead of merging
them after the last iteration of searching. The parallel version
only has |Tl| extra parameters compared with the single branch
version. The parallel structures have significant improvement over
the single branch structures in instance segmentation and object
detection tasks.

3.4 RF-Next: Next Generation Receptive Field Models

Our global-to-local receptive field searching scheme is suitable
for various models that utilize convolutions. Given an initial
network structure, we apply the searching scheme to convolutions
with kernel sizes larger than one. For easy implementation, we
utilize dilation rates to represent the receptive field. The global
search aims to find receptive field combinations beyond human
knowledge, which is optional as many models have been manually
tuned. The local search finds suitable fine-grained receptive fields
with a small extra cost, and thus it can be easily applied to human-
designed models of various tasks. Enhanced by our receptive field
search, these Next generation Receptive Field models, namely
RF-Next models, show advantages on many tasks, e.g., object
detection, instance segmentation, semantic segmentation, speech
synthesis, and sequence modeling.

4 EXPERIMENTS ON TEMPORAL ACTION SEG-
MENTATION

Temporal action segmentation requires a relatively large range of
receptive fields, which is suitable for verifying the effectiveness of
our proposed global-to-local search. Therefore, we do our major
experiments on the temporal action segmentation task. This sec-
tion introduces the implementation details of our proposed global-
to-local search scheme and shows the superiority of searched
receptive field combinations over the human-designed patterns on
the temporal action segmentation task. We also give an analysis of
the search scheme and the property of searched structures.

4.1 Implementation Details

Structure Searching and Training. Our proposed method is
implemented with the PyTorch [114], and Jittor [115] frameworks.
Following existing works [7], [12], features are first extracted
from videos using the I3D network [48] and then passed to
temporal action segmentation models to get the temporal segmen-
tation. Since our proposed global-to-local search scheme is model-
agnostic, the training settings for model evaluation, i.e., training
epochs, optimizer, learning rate, batch size, keep the same with the
cooperation methods [7], [8], [13]. In the global search stage, we
set the total iterations N = 100, k = 2 in Equ. (1), the initialized
population size M = 50, and mutation probability pm=ps=0.2.
The T in Equ. (1) is set to 10, indicating the maximum dilation
rate of the global search space is 1024. We observe that 5 epochs
of training can reflect the structure performance, and therefore
models are trained with 5 epochs for evaluation. In the EGI local
search stage, ∆Dl and S are set to be 0.1Dl and 3, respectively.
We train the model for 30 epochs during local search, and each
iteration contains 3 epochs.

Datasets. Following [7], [8], [12], [13], we evaluate our proposed
method on three popular temporal action segmentation datasets:
Breakfast [113], 50Salads [112], and GTEA [52]. The details of
the three datasets are summarized in Tab. 2. As far as we know,
the Breakfast dataset is the largest public dataset for the temporal
action segmentation task, which has a larger number of categories
and samples compared with the other two datasets. So we perform
our ablations mainly on the Breakfast dataset if not otherwise
stated. Following common settings [7], [8], [12], [13], we perform
4-fold cross-validation for the Breakfast and GTEA datasets and
5-fold cross-validation for the 50Salads dataset.

Evaluation Metrics. We follow previous works [7], [8], [12],
[13] to use the frame-wise accuracy (Acc), segmental edit score
(Edit) [11], and segmental F1 score [116] at the temporal inter-
section over union with thresholds 0.1, 0.25, 0.5 (F@0.1, F@0.25,
F@0.5) as our evaluation metrics.

4.2 Performance Evaluation

Global2Local Search. Our proposed global-to-local search aims
to find new combinations of receptive fields better than human
designings. We mainly take MS-TCN [12] as our baseline ar-
chitecture to perform the global-to-local search. When testing
the MS-TCN on the Breakfast dataset, we train all models with
batch size 8 to save training time. The reproduced results shown
in Tab. 1 indicate that a large batch size achieves much better
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1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512 1 2 4 8 16 32 64 128 256 512
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3 1080 11 153 531 72 1245 20 42 432 6 11 37 99 527 29 14 1243 197 9 1 54 15 5 1 13 20 10 136 6 1 24 6 37 182 9 1053 85 241 23

4 5 3 26 449 9 274 64 3 25 12 462 23 1 1 3 1 11 2 34 23 2 129 2 13 220 2 102 7 144 2 3 29 4 2 2 482 73 34 18

Baseline

50Salads

BreakFast

GTEA

Fig. 5. Visualization of the global-to-local searched structures of three datasets with the MS-TCN baseline. Each row represents the dilations of one
structure, which contains four stages.

TABLE 3
Cooperation with existing temporal action segmentation methods. We
perform the whole search pipeline based on MS-TCN [12]. Because of
the limited computing resources, we only perform the EGI local search

on MS-TCN++ [7] and BCN [13], denoted by †. SSTDA [8] uses
MS-TCN [12] as a backbone, so we directly add our searched structure

to SSTDA, denoted by ‡.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

ED-TCN [11] - - - - 43.3
HTK (64) [58] - - - - 52.0
TCFPN [69] - - - - 56.3
GRU [60] - - - - 60.6
GTRM [19] 57.5 54.0 43.3 58.7 65.0
MS-TCN [12] 52.6 48.1 37.9 61.7 66.3
RF-MS-TCN 74.9 69.0 55.2 73.3 70.7
MS-TCN++ [7] 64.1 58.6 45.9 65.6 67.6
RF†-MS-TCN++ 72.4 66.8 53.5 70.2 69.6
BCN [13] 68.7 65.5 55.0 66.2 70.4
RF†-BCN 72.5 69.9 60.2 69.0 72.9
SSTDA [8] 75.0 69.1 55.2 73.7 70.2
RF‡-SSTDA 76.3 69.9 54.6 74.5 70.8

Global Search
Random Search

F@
0.

1

Iterations
Fig. 6. Performance comparison between our proposed genetic-based
search and random search during the global search stage.

performance. Tab. 1 shows that global-to-local searched structures
achieve considerable performance improvements than human-
designed baselines, i.e., the searched structure surpasses the repro-
duced baseline with 5.8% in terms of F@0.1. The global-to-local
search focuses on receptive field combinations, thus cooperating
with existing SOTA temporal action segmentation methods to
improve their performance. As shown in Tab. 3, on the large-
scale BreakFast dataset, global-to-local search consistently boosts
the performance of MS-TCN++ [7], BCN [13], and SSTDA [8].
Also, we give comparisons on two small-scale datasets, 50Salads
and GTEA datasets in Tab. 4, proving the effectiveness of our
proposed global-to-local search.

Global Search. Global search reduces the computational cost with
the sparse search space and our proposed genetic-based searching
scheme. Fig. 6 shows the performance change of models during

TABLE 4
Comparison with existing temporal action segmentation methods on

the 50Salads and GTEA datasets.

50Salads F@0.1 F@0.25 F@0.5 Edit Acc

Spatial CNN [117] 32.3 27.1 18.9 24.8 54.9
Bi-LSTM [64] 62.6 58.3 47.0 55.6 55.7
Dilated TCN [11] 52.2 47.6 37.4 43.1 59.3
ST-CNN [117] 55.9 49.6 37.1 45.9 59.4
TUnet [118] 59.3 55.6 44.8 50.6 60.6
ED-TCN [11] 68.0 63.9 52.6 59.8 64.7
TResNet [15] 69.2 65.0 54.4 60.5 66.0
TricorNet [66] 70.1 67.2 56.6 62.8 67.5
TRN [68] 70.2 65.4 56.3 63.7 66.9
TDRN [68] 72.9 68.5 57.2 66.0 68.1
MS-TCN++ [7] 80.7 78.5 70.1 74.3 83.7
MS-TCN [12] 76.3 74.0 64.5 67.9 80.7
RF-MS-TCN 80.3 78.0 69.8 73.4 82.2
BCN [13] 82.3 81.3 74.0 74.3 84.4
RF-BCN 85.8 83.6 76.5 78.1 85.5

GTEA F@0.1 F@0.25 F@0.5 Edit Acc

Spatial CNN [117] 41.8 36.0 25.1 - 54.1
Bi-LSTM [64] 66.5 59.0 43.6 - 55.5
Dilated TCN [11] 58.8 52.2 42.2 - 58.3
ST-CNN [117] 58.7 54.4 41.9 - 60.6
TUnet [118] 67.1 63.7 51.9 60.3 59.9
ED-TCN [11] 72.2 69.3 56.0 - 64.0
TResNet [15] 74.1 69.9 57.6 64.4 65.8
TricorNet [66] 76.0 71.1 59.2 - 64.8
TRN [68] 77.4 71.3 59.1 72.2 67.8
TDRN [68] 79.2 74.4 62.7 74.1 70.1
MS-TCN++ [7] 88.7 87.4 73.5 83.0 78.2
MS-TCN [12] 87.5 85.4 74.6 81.4 79.2
Reproduce 87.1 83.6 70.4 81.1 75.5
RF-MS-TCN 89.9 87.3 75.8 84.6 78.5
BCN [13] 88.5 87.1 77.3 84.4 79.8
RF-BCN 92.1 90.2 79.2 87.2 80.6

the global searching process. Compared with the random search,
the genetic-based global search convergences faster. The standard
division of model performance searched by genetic-based search
is smaller than the random search, showing the stability of our
proposed search scheme. The visualized well-performed global-
searched structures in Fig. 5 prove that the global search discovers
various structures completely different from human-designed pat-
terns. Tab. 5(b) also shows that the local search heavily relies on
global-searched structures to achieve better performance.

Local Search. Based on the global-searched structures, our pro-
posed EGI local search aims to fine-tune the receptive field in
a finer search space. We compare the DARTS [20] method and
EGI local search based on the global searched structures, as
shown in Tab. 5(a). Compared with the DARTS method that only
supports several search options, the EGI local search iteratively
finds the accurate dilations in a dense space, obtaining structures
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TABLE 5
Ablation about the proposed EGI local search.

(a) Performance of EGI local search and DARTS-related methods.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

DARTS [20] 73.4 67.3 53.1 72.7 69.5
+Early Stop [119] 73.8 67.6 52.8 72.8 69.3

DARTS+Early Stop 73.8 67.6 52.8 72.8 69.3
+ Fair DARTS [120] 73.3 67.5 52.9 71.9 69.9

Ours 74.9 69.0 55.2 73.3 70.7

(b) Performance of EGI local search initialized by different structures.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

random 67.7 61.8 48.3 68.4 67.0
random + local 73.6 67.8 53.7 72.3 69.9
baseline [12] 69.1 63.7 50.1 71.0 69.2
baseline + local 74.1 68.5 55.3 72.3 70.2
global 72.2 66.0 51.8 71.5 69.4
global + local 74.9 69.0 55.2 73.3 70.7

(c) Performance of EGI local search initialized by different structures.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

S = 2 74.8 68.9 55.0 73.4 70.4
S = 3 74.9 69.0 55.2 73.3 70.7
S = 4 74.9 68.8 55.1 73.3 70.9

(d) Ablation of possible probability mass functions in EGI local search.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

sigmoid 72.7 66.9 52.7 71.8 69.4
softmax 73.2 67.2 52.0 71.6 69.7
Equ. (4) 74.9 69.0 55.2 73.3 70.7

TABLE 6
GPU hours of the global and local search on different temporal action

segmentation datasets using the RTX 2080Ti GPU based on the
MS-TCN method.

GPU Hours BreakFast 50Salads GTEA

Global Search 144h 9h 1h
Local Search 2.2h 0.15h 0.05h

MS-TCN Training 2.0h 0.14h 0.05h

with better performance. We also compare the EGI local search
with some variants of DARTS, i.e., the early stop scheme [119]
and Fair DARTS [120], and our method outperform them with a
clear margin. The early stop scheme improves the performance of
DARTS that searched with more epochs, while Fair DARTS [120]
has no advantage on the receptive field search task. The early
stop scheme [119] stops the searching before the overfitting of
DARTS. Fair DARTS [105] solves the problem of performance
collapse caused by the unfair advantage in exclusive competition
between different operator paths, while the dilation search has no
such problem because each path has the same operation.

As shown in Tab. 5(c), EGI local search is insensitive to
the number of sampling dilation rates S, as it searches dilation
rates with the expectation. Tab. 5(b) shows that the EGI local
search can boost the performance of randomly generated, human-
designed, and global-searched structures. Still, the performance
of the local-searched structures is related to the initial structures,
as local search focuses on searching for receptive fields within

TABLE 7
Cross-validation performance (F@0.1) of searched structures among
the fold 1 of different datasets. Arch-dataset indicates the structure is

searched on which dataset.

MS-TCN Arch-50Salads Arch-GTEA Arch-BF

50Salads 67.1 75.4 68.8 72.6
GTEA 83.8 82.4 88.9 85.6
BF 69.9 75.1 72.5 76.4
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Fig. 7. Visualization of average dilation rates in each stage and the range
of performance of global-searched structures.

a finer local search space. We visualize the searching process of
the iterative local search in Fig. 4. The dilation rates for each layer
gradually converge to a suitable state during the iterative searching
process. Tab. 5(d) verifies different ways to get the approximated
probability mass function PMF (di) from coefficient w. Equ. (4)
is superior to the sigmoid and softmax functions because it
maintains the probability distribution while the other two functions
change the distribution non-linearly.

Searching Cost. We report the cost of our proposed global-to-
local search method. When cooperating with MS-TCN, the size of
the receptive field combination search space is 102440. The cost
of searching on such a huge space is unaffordable when using
existing search methods. Our proposed global-to-local search
decomposes the searching process into the global and local search
to find the combination in a coarse-to-fine manner. Since the main
bottleneck of the search method is the GPU resources, we report
the GPU hours of the proposed global-to-local search in Tab. 6.
The global search requires more computational cost to find mul-
tiple new well-performed structures with different patterns than
human-designed structures. The local search needs a small training
cost to fine-tune the global-searched/human-designed structures in
the dense but local search space.

4.3 Observations
In this section, we try to exploit the common knowledge contained
in the global-to-local searched structures.

Connections between Receptive Fields and Data. We want to
know if receptive field combinations vary among data. Therefore,
we evaluate the generalization ability of the searched structures on
the subsets of the same dataset and different datasets, respectively.
Within the BreakFast dataset, we perform the global-to-local
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TABLE 8
Performance of local search on object detection with COCO [121] dataset using Faster-RCNN as the baseline method. Local-P means the

local-searched structure with parallel receptive fields as described in Sec. 3.3. -R50 and -R101 denote using ResNet-50 and ResNet-101 as
backbones, respectively. S indicates using S branches in local search as shown in Equ. (4).

P validation set test set
mAP mAP50 mAP75 mAPs mAPm mAPl mAP mAP50 mAP75 mAPs mAPm mAPl

Faster-RCNN-R50 [2] 37.4 58.3 40.6 22.0 41.1 48.1 37.8 59.0 41.0 22.1 40.8 46.4

+RF (S = 3) 39.3 60.6 42.9 23.5 43.0 51.0 39.2 60.9 42.6 22.6 41.8 48.9
+RF (S = 3) ✓ 40.2 61.7 43.8 23.5 43.9 52.2 40.4 62.1 44.0 23.6 43.0 50.5
+RF (S = 2) 39.1 60.5 42.3 23.2 42.8 50.3 39.1 60.8 42.3 22.7 41.7 48.7
+RF (S = 2) ✓ 40.0 61.4 43.8 23.9 43.6 51.9 40.3 62.1 43.9 23.7 43.0 50.4

Faster-RCNN-R101 [2] 39.4 60.1 43.1 22.4 43.7 51.1 39.7 60.7 43.2 22.5 42.9 49.9
+RF (S = 3) 41.1 62.4 44.7 24.5 45.1 53.9 41.2 62.8 44.9 23.6 44.1 52.0
+RF (S = 3) ✓ 42.0 63.2 45.7 25.0 45.9 55.4 42.1 63.8 45.8 24.3 45.1 53.3

OB-R50

IN-R50

OB-R101

IN-R101
S2 S3 S4 FPN RPN MASK

Fig. 8. Visualization of the local-searched structures of Faster-RCNN [2] for object detection (OB) and Mask-RCNN [4] for instance segmentation
(IN). S2-S4 denotes stage 2 to stage 4 of the ResNet backbone. FPN, RPN, and MASK mean the feature pyramid network, region proposal network,
and the mask segmentation head in Faster-RCNN and Mask-RCNN.

TABLE 9
Cross-validation performance (F@0.1) of searched structures among
different folds of the BreakFast dataset. Arch-n means the structure is

searched on fold n.

BreakFast Arch-1 Arch-2 Arch-3 Arch-4

fold1 76.4 76.3 76.2 75.7
fold2 74.1 75.3 75.1 74.6
fold3 76.1 76.6 76.1 75.4
fold4 71.7 72.1 72.0 71.8

search on one fold and then evaluate the searched structures
on other folds. Tab. 9 shows almost no obvious performance
gap on different folds, indicating that receptive field combi-
nations almost have no difference within a dataset. However,
when searching and evaluating structures across different datasets,
different structures searched on different datasets have a large
performance gap, as shown in Tab. 7. We can conclude that
different data distributions will result in different receptive field
combinations. We visualize the structures searched from different
datasets in Fig. 5. The searched structures are based on both
global and local search. Since the global search introduces the
randomness of each structure, we cannot fairly compare these
structures for different datasets. Still, we give a rough explanation
based on the searched receptive field of each structure. The
structures searched on the Breakfast and 50Salads datasets tend
to have larger receptive fields, while the structure searched on
the GTEA dataset has smaller receptive fields. The number of
video frames shown in Table 2 positively correlates with receptive
fields. We assume that the average video length of a dataset might
influence the receptive fields of the structure. A video with more
frames normally requires larger receptive fields to capture long-
term relations. The structures searched on Breakfast and 50Salads
datasets have similar average receptive fields, but the average

video length of 50Salads is longer than Breakfast. We assume that
understanding the content of cooking breakfast in the Breakfast
dataset requires more long-range information than the preparing
salads content in the 50Salads dataset. Analyzing different video
contents might need features from different ranges of receptive
fields. Our work mainly focuses on searching receptive fields, but
fully explaining why the receptive field combination of a certain
task on a certain dataset looks like the searched one is still an open
question.

Receptive Fields for Different Stages. Our global-to-local search
is based on MS-TCN. MS-TCN contains four stages, and all
stages share the same receptive field combination in human design.
The visualized searched structures shown in Fig. 5 demonstrate
that different stages have different receptive field combinations,
which conflicts with human design. We further count the average
receptive fields of each stage among all individuals. The range of
performance and the average dilation rates of each stage are shown
in Fig. 7. The average dilation rate in the first stage of MS-TCN
tends to be large on high-performance structures. In contrast, the
average dilation rate in the third stage of MS-TCN is relatively
small on high-performance structures. We assume that the first
stage of MS-TCN requires large receptive fields to get the long-
term context for coarse prediction, while the following stages need
small receptive fields to refine the results locally.

5 RF-NEXT FOR MULTIPLE NETWORKS AND
TASKS

This section shows that RF-Next models can be applied to multiple
networks and tasks. We use prefixes RF to denote RF-Next
models, and P means the parallel receptive field version.
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S2 S3 S4 FPN RPN MASK

(a)

(b)

Fig. 9. Visualization and probability of each receptive field in the parallel searched structure of ResNet-50 based Faster-RCNN (a) and Mask-RCNN
(b) when S=3 during searching. S2-S4 denotes stage 2 to stage 4 of the ResNet backbone. FPN, RPN, and MASK mean the feature pyramid
network, region proposal network, and the mask segmentation head in Faster-RCNN and Mask-RCNN.

TABLE 10
Performance of local search on instance segmentation with COCO [121] dataset using Mask-RCNN as the baseline method. Local-P means the

local-searched structure with parallel receptive fields as described in Sec. 3.3. -R50 and -R101 denote using ResNet-50 and ResNet-101 as
backbones, respectively. R50-NonLocal means adding the non-local block [40] to each residual block in stage 4 of the ResNet-50 backbone. S

indicates using S branches in local search as shown in Equ. (4).

P mAPbb mAPbb
50 mAPbb

75 mAPbb
s mAPbb

m mAPbb
l mAPmk mAPmk

50 mAPmk
75 mAPmk

s mAPmk
m mAPmk

l

validation set:

Mask-RCNN-R50 [4] 38.2 59.0 41.7 22.4 41.6 49.2 34.7 55.9 37.0 16.5 37.4 50.1
+RF (S = 3) 39.7 60.7 43.4 23.7 43.3 51.3 36.0 57.8 38.4 17.0 39.1 52.2
+RF (S = 3) ✓ 41.0 62.3 44.9 24.2 44.7 53.2 37.1 59.1 39.5 18.4 39.9 53.6
+RF (S = 2) 39.6 60.8 43.2 23.3 43.1 51.4 35.9 57.6 38.3 16.4 38.9 52.2
+RF (S = 2) ✓ 40.7 62.1 44.5 24.4 44.3 52.9 36.8 58.9 39.3 18.0 39.7 53.6

Mask-RCNN-R101 [4] 40.0 60.5 44.0 22.6 44.0 52.6 36.1 57.5 38.6 18.8 39.7 49.5
+RF (S = 3) 41.7 62.8 45.7 24.8 45.4 55.4 37.4 59.6 40.0 18.5 40.6 55.1
+RF (S = 3) ✓ 42.7 64.0 46.7 25.6 46.8 55.8 38.4 60.9 41.3 18.5 42.0 55.7

R50-NonLocal [40] 39.4 60.8 43.4 23.2 43.2 50.5 35.5 57.1 37.9 17.2 38.5 51.3
+RF (S = 2) 40.2 61.5 43.9 23.9 43.9 52.2 36.4 58.5 38.7 17.6 39.3 52.3
+RF (S = 2) ✓ 40.8 62.2 44.6 24.4 44.5 53.0 36.9 59.0 39.6 18.0 39.8 53.8

test set:

Mask-RCNN-R50 [4] 38.5 59.5 41.8 22.3 41.6 47.4 34.9 56.4 37.2 18.9 37.5 44.6
+RF (S = 3) 40.0 61.4 43.6 23.2 42.6 49.8 36.2 58.5 38.5 19.9 38.6 46.8
+RF (S = 3) ✓ 41.0 62.5 45.0 24.0 43.8 51.3 37.1 59.5 39.9 20.5 39.7 48.2
+RF (S = 2) 39.8 61.2 43.4 23.2 42.3 49.4 36.1 58.2 38.6 19.8 38.4 46.5
+RF (S = 2) ✓ 41.0 62.5 44.7 24.1 43.7 51.4 37.1 59.5 39.7 20.7 39.6 48.3

Mask-RCNN-R101 [4] 40.4 61.2 44.1 23.1 43.5 50.8 36.5 58.3 38.9 19.6 39.2 47.8
+RF (S = 3) 42.0 63.4 45.9 24.2 45.0 53.1 37.8 60.5 40.4 20.5 40.4 49.7
+RF (S = 3) ✓ 42.8 64.1 46.9 24.7 46.1 54.2 38.5 61.3 41.3 21.0 41.4 50.7

R50-NonLocal [40] 39.8 61.4 43.3 23.2 42.8 49.1 36.0 58.2 38.3 19.7 38.6 46.3
+RF (S = 2) 40.4 61.9 44.0 23.2 42.8 50.4 36.4 58.7 38.9 19.7 38.6 47.2
+RF (S = 2) ✓ 41.2 62.9 45.0 23.7 43.7 51.7 37.3 59.8 39.9 20.3 39.7 48.3

5.1 Spatial tasks

We apply our proposed searching scheme to find proper receptive
fields for spatial tasks, e.g., object detection, instance segmenta-
tion, and semantic segmentation. We observe that proper receptive
fields significantly improve the performance of these tasks.

5.1.1 Object Detection

Object detection aims to assign bounding boxes and categories
to objects of various sizes. We utilize the widely used Faster-
RCNN [2] method with a dilation rate of 1 for all convolutions.
Faster-RCNN applies the feature pyramid network to aggregate
features with multiple scales to handle objects of various sizes.
However, the receptive fields for convolutions are ignored. There-
fore, we search for dilation rates of convolutions with kernel sizes
larger than one in the Faster-RCNN. Due to the extremely large

training cost and the small initial dilation rates, we only use the
highly efficient local search scheme.

Training and Searching. We employ the ResNet-50 [15] and
ResNet-101 [15] that are pre-trained on the ImageNet [122]
dataset as backbones. We verify the effectiveness of local search
on the COCO dataset [121] and report the mean average preci-
sion (mAP) to evaluate the trained model. Following the official
training scheme [2], the images are resized to 1333 × 800 with a
randomly horizontal flip, and the model is trained for 12 epochs,
with a batch size of 16 on 4 GPUs. During the local search, we
train the model for 12 epochs and update the structure in each
epoch for the first 10 epochs. The ∆Dl is set to be 0.5Dl. Since
the weights of the first stage of ResNet in Faster-RCNN are frozen
during training, we skip this stage during searching.
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Performance and Observation. As shown in Tab. 8, RF-Next
model improves the test mAP of Faster-RCNN with ResNet-50
by 1.4%. For the RF-ResNet-101 model, the test mAP is also
improved by 1.5%. Theoretically, a network with a larger depth
has a larger range of receptive fields. Still, effective receptive
field settings have a similar performance gain on both shallow
and deep models. We visualize the searched dilation rates of
RF-ResNet-50/101 based Faster-RCNN as shown in Fig. 8. The
shallow layers require relatively small dilation rates, while some
deep layers have large dilation rates. Interestingly, the ResNet-101
based model requires larger dilation rates in stage 4 of the network
than ResNet-50 based model.

When utilizing the RF-Next with parallel receptive fields, the
performance gain of ResNet-50 and ResNet-101 based models are
2.6% and 2.4% in test mAP, indicating that object detection task
needs parallel multi-scale ability. The visualization and probability
of each receptive field in the parallel RF-Next are shown in Fig. 9.
By default, we utilize the number of sampling dilation rates
S = 3 in Equ. (4). And we also explore using S = 2 for local
search, as shown in Tab. 8. Using two/three branches achieve
similar performance for parallel RF-Next, showing that using two
branches for each layer provides sufficient multi-scale ability. The
result is also consistent with the observation in Tab. 5(c) that the
proposed expectation-guided search is insensitive to the number
of sampling dilation rates.

We analyze the performance gain for objects of different sizes
in Tab. 8. For ResNet-50 and ResNet-101 based models, the
test mAP improvement for small, medium, and large objects are
(1.5%, 2.2%, 4.1%) and (1.8%, 2.2%, 3.4%), respectively. The
performance gain gradually increases with the increase of object
sizes, showing that the default receptive field settings of Faster-
RCNN are not large enough to capture large objects.

5.1.2 Instance Segmentation

Instance segmentation outputs the instances segmentation masks
and categories, which is similar to the object detection task. To
compare the receptive field requirements of object detection and
instance segmentation, we use the widely used Mask-RCNN [4]
that extends the Faster-RCNN with a mask segmentation branch.
Like the object detection, we apply the local search on convolu-
tions whose kernel is larger than one.

Training and Searching. The ResNet-50 [15] and ResNet-
101 [15] with ImageNet [122] pre-training are used as backbones.
We use the COCO dataset [121] for object detection and report the
mean average precision of bounding box (mAPbb) and instance
segmentation (mAPmk) to evaluate the trained model. To fairly
compare the searched structure on instance segmentation and
object detection, the training scheme of Mask-RCNN is aligned
with Faster-RCNN in both searching and re-training stages.

Performance and Observation. We give the performance com-
parison of searched structure and baseline in Tab. 10. Using the
RF-Next with a single branch brings 1.3%/1.3% gain on test
mAPmk and 1.5%/1.6% gain on test mAPbb of ResNet-50/101
based models. And the performance gains are further enlarged
by the parallel RF-Next, i.e., 2.2%/2.0% gain on test mAPmk

and 2.5%/2.4% gain on test mAPbb. We give the visualized
dilation rates comparison between Faster-RCNN and Mask-RCNN
as shown in Fig. 8. The dilation rates of these two tasks are very

similar because of the large similarity between them. As shown
in Fig. 9, the probability of dilation rates in the mask segmentation
head of Mask-RCNN shows that the middle two layers require
diverse receptive fields while the first and last layer requires a
small receptive field.

5.1.3 Semantic Segmentation
Semantic segmentation task requires assigning each pixel of
images with category labels. Receptive fields are vital for the
dense pixel-level prediction of semantic segmentation. Deeplab
series [5], [32] utilize convolution with dilation rates larger than
one to enlarge the receptive fields, which becomes the default
option for semantic segmentation networks [123], [124]. However,
possible better receptive fields than the human-designed ones have
not been explored. We apply the Deeplab V3 [32] network as the
baseline method and conduct local search to find more effective
receptive fields.

Training and Searching. We conduct experiments on both the
PASCAL VOC [125] dataset and the ADE20k dataset [126] using
the ImageNet pretrained ResNet-50 [15] based Deeplab V3 as the
baseline method. Following official training settings [32], models
are trained for 20k and 80k iterations for PASCAL VOC and
ADE20k, respectively, with a batch size of 16 on 4 GPUs. For
both datasets, the images are randomly scaled at a ratio between
0.5 and 2.0 and randomly cropped to 512 × 512. An auxiliary loss
is applied at the output of the third stage of the ResNet backbone
to ease convergence. To avoid the influence of auxiliary loss, we
apply the local search to stage 4 and the decoder of the network.
During the local search, we update the structure every 2k and
8k iterations for PASCAL VOC and ADE20k, respectively, and
conduct 8 iterations of the local search in total. The ∆Dl is set to
be 0.15Dl for both datasets.

Performance and Observation. We utilize the mean intersection
over union (mIoU) and the mean accuracy (mAcc) to evaluate the
trained models. As shown in Tab. 11, the RF-Next brings the 1.6%
and 0.8% gain in mIoU for PASCAL VOC and ADE20k datasets,
respectively. The searched multi-branch structures achieve similar
performance to the single branch competitors. We assume the
atrous spatial pyramid pooling structure in Deeplab V3 already
enhances the parallel multi-scale ability of the network. The
visualization of searched receptive fields in Fig. 10 indicates that
larger receptive fields are required in stage 4 of the network.

As described above, we skip the local search in the first three
stages of the network to avoid the side effect of auxiliary loss. We
show in Tab. 11 that searching all convolutions achieves 76.3%
mIoU, similar to the human-designed baseline. We observe that
searching receptive fields for all convolutions results in a much
smaller auxiliary loss value than human-designed baseline (0.102
VS. 0.191) and searching after stage 3 (0.102 VS. 0.189). Also,
compared to searching after stage 3, searching in the early stages
achieves the performance gain of 15.4% in mIoU for output in
stage 3 of the network. Since the local search relies on the gradient
backpropagation to find receptive fields, adding auxiliary loss
makes the local search find better receptive fields for output in
stage 3 instead of the final output.

5.2 Sequential tasks
Except for the temporal action segmentation task, we also conduct
receptive field search on other sequential tasks, e.g., speech
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TABLE 11
Performance of local search on semantic segmentation with PASCAL

VOC [125] and ADE20k datasets [126]. Local-P means the
local-searched structure with parallel receptive fields as described
in Sec. 3.3. †means apply local search to all convolutions of the

network. Local-S3 indicates the output in stage 3 of the network, where
an auxiliary loss is added to ease convergence [32].

P VOC [125] ADE20K [126]
mIoU mAcc mIoU mAcc

DeepLabV3 [32] 76.2 85.7 42.4 53.6
+RF 77.8 87.4 43.2 54.1
+RF ✓ 77.9 87.6 43.0 53.7

+RF† 76.3 85.8 - -
+RF-S3 51.7 64.7 - -
+RF-S3† 67.7 79.8 - -

Baseline

PASCAL VOC

ADE20K
S4 Decoder

Fig. 10. Visualization of the local searched receptive fields of stage 4
and decoder in Deeplab V3 on the semantic segmentation task.

synthesis, P-MNIST digit classification, and polyphonic music
modeling. We verify the effectiveness of global-to-local search on
the polyphonic music modeling and P-MNIST digit classification
task. Due to the high training cost of speech synthesis, we apply
the local search on top of the human-designed structure.

5.2.1 Speech Synthesis

As described in Sec. 2.2.2, we focus on the procedure of trans-
ferring acoustic features to speech waveform in speech synthesis.
We use WaveGlow [127] as the baseline method that combines the
advantage of Glow [128] and WaveNet [28]. WaveGlow network
has 12 coupling layers, where each contains 8 layers of dilated
convolutions with human-designed gradually expanded dilation
rates. To save computational cost, we utilize the local search to
find more effective dilation rates of these layers based on human-
designed structures.

Training and Searching. We conduct experiments on the widely
used LJ speech [129] dataset, including 13,100 audio clips with a
total length of about 24 hours. Each sample is randomly cropped
to 16,000 for training, and the sampling rate is 22,050Hz. The
mel-spectrograms [79], [130], generated through a short-time
Fourier transform, are fed to the network for speech synthesis.
The network is optimized by Adam optimizer with a learning
rate of 1e-4 for 100 epochs. We train the model with 4 GPUs
using the batch sizes of 20 and 48 during searching and training,
respectively. During the local searching, the ∆Dl and S are set to
be 0.6Dl and 3, respectively. We train the model for 60 epochs
during the local search and update the structure every 3 epochs.

Performance and Observation. We use three metrics, i.e., mel-
cepstral distortion (MCD) [131], perceptual evaluation of speech
quality (PESQ) [132] and log-likelihood ratio (LLR) [133], to
evaluate the speech synthesis quality, as shown in Tab. 12. MCD
measures the difference between two sequences of mel-cepstra of

(a)
(b)
(c)

Fig. 11. Visualization of the baseline structure (a), the global searched
structure (b) and the global-to-local searched structure (c) of TCN on
polyphonic music modeling task.

(a)

(b)

(c)

Fig. 12. Visualization of the baseline structure (a), the global searched
structure (b) and the global-to-local searched structure (c) of TCN on
P-MNIST Classification task.

speech, and a small MCD indicates the synthesized and natural
speeches are close. Similarly, LLR measures the difference be-
tween two speeches. The structure with searched receptive field
combinations achieves better performance than human-designed
receptive fields in MCD and PESQ. PESQ assesses the voice
quality, and a higher value between the synthesized and natural
speech means better the synthesized speech quality. We calculated
the PESQ under the narrowband of 8,000Hz. The speech synthesis
results of the local-searched structure also have a better PESQ
score, indicating that more proper receptive fields benefit the
speech synthesis quality.

We visualize the local searched and baseline receptive fields
(dilation rates) of WaveGlow [127] in Fig. 13. We observe that
the maximum dilation rate of the human-designed structure is
much larger than the searched structure, indicating that too large
receptive fields may not be necessary for this task. Unlike the
human-designed structure with the same receptive field combi-
nation for each coupling layer, the searched structure has small
receptive fields on the shallow layers and larger receptive fields
on the deeper layers. We assume that the speech synthesis task
requires local features in the shallow layers, and the deeper layers
are responsible for modeling the long-term dependencies.

5.2.2 Sequence Modeling using TCN

Bai et al. [134] have verified the performance of TCN on several
sequence modeling tasks. We further show the effectiveness of
RF-Next models on two sequential tasks, i.e., polyphonic music
modeling and P-MNIST digit classification.

P-MNIST Classification. P-MNIST classification aims to classify
the handwritten digit images in which the order of the pixels
is disrupted. P-MNIST dataset [135], [136] randomly permutes
images in the MNIST dataset [137] to 784 length sequences, which
is widely used for long-term relation modeling [134], [138]–[141].
A TCN with 8 layers is used for P-MNIST classification [134],
where each layer has a convolution with a kernel size of 7 and
a channel number of 25. We apply the global-to-local search
on the TCN to find more effective receptive fields. Following
the settings in [134], the final model is trained for 20 epochs
with an Adam optimizer. The initial learning rate is 2e-3 and
is multiplied by 0.1 at the 10-th epoch. In P-MNIST, the order
of the pixels is randomly permuted, and we fix the permutation
order for all experiments. During the global search, we set the
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Fig. 13. Visualization of the local searched dilation rates of WaveGlow [127] for the speech synthesis task.

TABLE 12
Speech synthesis performance of WaveGlow [127] based on

local-searched structure on the LJ speech dataset [129].

MCD↓ [131] LLR↓ [133] PESQ↑ [132]

WaveGlow [127] 5.79 1.29 1.52
RF-WaveGlow 5.59 0.71 1.84

TABLE 13
Performance of global-to-local search on TCN [134]. We evaluate the

performance of the polyphonic music modeling and P-MNIST digit
classification task.

Task baseline global global+local

Permuted MNIST (accuracy↑) 97.2 97.6 97.8
Music Nottingham (NLL↓) 2.97 2.73 2.69

iterations N = 50 and the initial population size M = 25. The
model is trained with 11 epochs for each sample. During the local
search, the ∆Dl is set to 0.1Dl, and the structure is trained for 15
epochs and updated every 3 epochs. The classification accuracy
is used as the evaluation metric. As shown in Tab. 13, the global
search improves the accuracy from 97.2% to 97.6%, and the local
search further improves the performance to 97.8%. The visualized
structure in Fig. 12 shows the searched receptive fields are very
different from the human-designed patterns.

Polyphonic Music Modeling. Polyphonic music modeling aims
to predict the subsequent musical notes based on the history of
the played notes. The polyphonic music modeling is conducted
on the widely used Nottingham [142]–[144] dataset composed
of 1200 British and American folk tunes. For polyphonic music
modeling, we utilize a TCN with 4 layers, where each layer has
two convolutions with a kernel size of 5 and a channel number
of 150. Following [134], the model is trained for 100 epochs with
an Adam optimizer. The initial learning rate is 1e-3, which is
multiplied by 0.1 every 30 epochs. The dropout with the rate of
0.25 and the gradient clipping with the maximum norm of 0.2 is
applied. We set the iterations N = 50 and the initial population
size M = 25 for the global search, and each sample is trained
with 30 epochs. For local search, the ∆Dl is set to 0.15Dl, and
the model is trained for 60 epochs and updated in every 10 epochs.
We evaluate models using the negative-log-likelihood (NLL), as
shown in Tab. 13. The NLL is improved from 2.97 to 2.73 by
the global search, and the local search improves the performance
to 2.69. The global and local-searched structures are shown in
Fig. 11.

5.3 Receptive field search on Modern Networks
We apply the receptive field searching method on multiple net-
works, e.g., SOTA attention/convolution based networks, multi-
scale networks, and searched networks.

TABLE 14
Receptive field search improves SOTA attention/convolution models for

object detection and instance segmentation tasks on the COCO val
dataset. Following the official implementation of PVT [145], [146] and
ConvNeXt [147], PVTv2-B0 and ConvNeXt-T adopt the Mask RCNN

detector and Cascade Mask RCNN detector, respectively.

Object det. P mAP mAP50 mAP75 mAPs mAPm mAPl

PVTv2-B0 38.2 60.5 40.7 22.9 40.9 49.6
RF-PVT 38.8 60.9 41.8 23.6 41.2 50.8
RF-PVT ✓ 39.1 60.8 42.7 23.3 41.8 51.4

ConvNeXt-T 50.4 69.1 54.8 33.9 54.5 65.1
RF-ConvNeXt 50.6 69.2 54.8 34.1 54.0 65.5
RF-ConvNeXt ✓ 50.9 69.5 55.5 34.3 54.6 65.8

Instance seg. mAP mAP50 mAP75 mAPs mAPm mAPl

PVTv2-B0 36.2 57.8 38.6 18.0 38.4 51.9
RF-PVT 36.8 58.4 39.5 18.7 39.0 52.7
RF-PVT ✓ 37.1 58.5 40.0 17.8 39.3 53.7

ConvNeXt-T 43.7 66.5 47.3 24.2 47.1 62.1
RF-ConvNeXt 44.0 66.8 47.5 24.8 47.0 62.1
RF-ConvNeXt ✓ 44.3 67.3 47.8 24.7 47.4 62.6

TABLE 15
Performance of receptive field search on semantic segmentation using

PVTv2-B0 backbone with the Semantic FPN method [146].

P Pascal VOC [125] ADE20K [126]
mIoU mAcc mIoU mAcc

PVTv2-B0 73.7 85.0 37.5 48.3
RF-PVT 74.4 86.0 38.0 48.6
RF-PVT ✓ 74.4 85.9 37.8 48.7

Receptive Field Search Improves SOTA Models. We show
recent SOTA models, e.g., PVT [145], [146] and Con-
vNeXt [147], still benefit from our receptive field searching
method. PVTv2 [145], [146] is a self-attention based pyramid vi-
sion transformer, which uses both global self-attentions and depth-
wise convolutions. We apply the receptive field search to convo-
lutions of PVTv2 for object detection, instance segmentation, and
semantic segmentation tasks, achieving stable improvements over
the strong PVTv2-B0 baseline. As shown in Tab. 14, the single-
branch RF-PVTv2 has the gain of 0.6% box mAP and 0.6% mask
mAP for object detection and instance segmentation tasks. The
parallel RF-PVTv2 further improves 0.3% box mAP and 0.3%
mask mAP for these two tasks. Tab. 15 shows the searched single-
branch structure improves the baselines with 0.7% and 0.5% on
Pascal VOC and ADE20K datasets. ConvNeXt [147] is a SOTA
convolutional model that outperforms many SOTA attention-based
models. Even though ConvNeXt manually tunes the kernel size
of convolutions to support a larger range of receptive fields, the
receptive field search still further improves the performance on
object detection and instance segmentation. As shown in Tab. 14,
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TABLE 16
Receptive field search improves hand-crafted multiple receptive fields
models, i.e., Res2Net [16] and HRNet [148], [149], for object detection

and instance segmentation tasks on the COCO val dataset. The
Cascade Mask RCNN method is used as the detector.

Object det. P mAP mAP50 mAP75 mAPs mAPm mAPl

Res2Net-101 46.3 64.4 50.5 27.2 50.3 60.5
RF-Res2Net 46.9 65.8 51.2 28.4 50.7 62.1
RF-Res2Net ✓ 47.9 66.6 52.2 29.7 51.9 62.8

HRNetV2p-W18 41.6 58.7 45.4 23.5 44.7 54.9
RF-HRNet 42.9 60.8 46.7 25.9 46.2 54.8
RF-HRNet ✓ 43.7 61.9 47.7 26.5 47.3 56.7

Instance seg. mAP mAP50 mAP75 mAPs mAPm mAPl

Res2Net-101 40.0 61.7 43.3 22.2 43.8 54.1
RF-Res2Net 40.7 63.2 43.9 20.4 44.0 59.0
RF-Res2Net ✓ 41.5 64.0 44.9 21.3 44.6 59.5

HRNetV2p-W18 36.4 56.3 39.3 19.1 39.1 49.5
RF-HRNet 37.6 58.3 40.4 19.0 40.2 53.9
RF-HRNet ✓ 38.1 59.3 41.0 19.4 40.7 55.3

the parallel version of searched structure has considerable gains of
0.5% box mAP and 0.6% mask mAP over the strong ConvNeXt-T
model. The performance gains over these two strong SOTA models
prove the effectiveness of our receptive field searching method.

Receptive Field Search Improves Multi-scale Models. We show
the advantage of receptive field searching over popular hand-
crafted multi-scale models with multiple receptive fields, e.g., HR-
Net [148], [149] and Res2Net [16]. HRNet parallel processes fea-
tures of multiple resolutions to form the multi-scale representation.
Res2Net constructs hierarchical residual-like connections within a
block to enable fine-grained multiple receptive fields. Despite their
good hand-crafted multi-scale ability, we show in Tab. 16 that
searched receptive fields constantly improve their performance on
object detection and instance segmentation tasks. For HRNet, the
single/multiple-branch RF-HRNet improves 1.3%/2.1% box mAP
on object detection and 1.2%/1.7% mask mAP on instance seg-
mentation. The single/multiple-branch RF-Res2Net also improves
the Res2Net with 0.6%/1.6% box mAP on object detection and
0.7%/1.5% mask mAP on instance segmentation. Therefore, our
receptive field searching method can further improve the hand-
crafted multi-scale models with better receptive field combina-
tions.

Comparison with Attention Mechanisms. As discussed in the
related work, attention mechanisms theoretically can form ar-
bitrary receptive fields [39]–[41]. However, we are not aware
of the actual receptive field representation ability of attention
mechanisms. Therefore, we propose to compare our receptive field
search method with the non-local module [40] on the instance
segmentation task. Following the implementation in [40], we insert
the non-local blocks to each residual block in stage 4 of the
ResNet50 backbone. As shown in Tab. 10, on the COCO testing
set, the non-local based Mask-RCNN improves the Mask-RCNN
baseline with 1.1 mask mAP and 1.3 box mAP. The Mask-RCNN
with searched parallel receptive fields outperforms non-local based
Mask-RCNN by 1.1 mask mAP 1.2 box mAP, showing that the
searched receptive fields provide better representation than non-

TABLE 17
Performance of local search on semantic segmentation with

Auto-deeplab [23] and Cityscapes datasets [150]. Local-P means the
local-searched structure with parallel receptive fields as described

in Sec. 3.3.

P mIoU mAcc

Auto-deeplab [23] 76.0 83.7
RF-Auto-deeplab 76.3 84.2
RF-Auto-deeplab ✓ 76.7 84.3

local modules. Therefore, though the non-local module improves
the model performance, it cannot provide effective receptive fields
as strong as our searched receptive fields. Then, we apply the local
search to the non-local based network, and the hyper-parameters
for searching are kept consistent with the standard ResNet. We
observe a further performance gain with both searched single-
branch receptive fields and parallel-branch receptive fields. The
single-branch version has the gain of 0.4 mask mAP and 0.6 box
mAP, and the parallel-branch version has the gain of 1.3 mask
mAP and 1.4 box mAP. The receptive field searching scheme can
further improve the performance of the non-local based model,
indicating that the non-local module may not be able to cover all
effective receptive fields even with its dense connections among
pixels.

Searching Receptive Fields over the Searched Network. Auto-
deeplab [23] searches the feature resolution for different stages
of the semantic segmentation network. To verify if it is possible
to adjust the receptive fields of Auto-deeplab further, we conduct
the local search on top of the Auto-deeplab. We follow the imple-
mentation of Auto-deeplab [23] to search on the Cityscapes [150]
dataset. As shown in Tab. 17, both single/multiple-branch RF-
Auto-deeplab brings performance gain over Auto-deeplab in
mIoU. Therefore, our receptive field searching scheme can further
benefit the semantic segmentation model with searched feature
resolutions.

6 CONCLUSION

We propose a global-to-local search scheme to search for effec-
tive receptive field combinations at a coarse-to-fine scheme. The
global search discovers effective receptive field combinations with
better performance than hand designings but completely different
patterns. The expectation-guided iterative local search scheme
enables searching fine-grained receptive field combinations in the
dense search space. RF-Next models, enhanced with receptive
field search scheme, can be plugged into multiple tasks, e.g., action
segmentation, sequence modeling [134], [151], segmentation [4],
[5], [152]–[154], object detection [155], [156] methods to boost
the performance further.
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