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Abstract—How to identify and segment camouflaged objects from the background is challenging. Inspired by the multi-head
self-attention in Transformers, we present a simple masked separable attention (MSA) for camouflaged object detection. We first
separate the multi-head self-attention into three parts, which are responsible for distinguishing the camouflaged objects from the
background using different mask strategies. Furthermore, we propose to capture high-resolution semantic representations
progressively based on a simple top-down decoder with the proposed MSA to attain precise segmentation results. These structures
plus a backbone encoder form a new model, dubbed CamoFormer. Extensive experiments show that CamoFormer achieves new
state-of-the-art performance on three widely-used camouflaged object detection benchmarks. To better evaluate the performance of
the proposed CamoFormer around the border regions, we propose to use two new metrics, i.e., BR-M and BR-F. There are on average
~5% relative improvements over previous methods in terms of S-measure and weighted F-measure. Our code is available at

https://github.com/HVision-NKU/CamoFormer.

Index Terms—camouflaged object detection, self-attention, masked separable attention, top-down decoder

1 INTRODUCTION

oreground and background (FG/BG) segmentation
Ftechniques [5], [22], [39] play a crucial role in com-
puter vision, aiming to accurately distinguish and sepa-
rate the main subject (foreground) from the surrounding
environment (background), contributing to advancements
in object recognition [3], scene understanding [4], [33], efc.
Camouflaged object detection (COD) is a new challenging
FG/BG segmentation task [13] that has been popular in
recent years [13], [14], [16], [26], [51]. Biological studies
have shown that the human visual perceptual system can
be easily deceived [57] by various camouflage strategies in
that camouflaged objects are highly similar to their sur-
roundings or extremely small in size. The high similarity
between the camouflaged objects and their surroundings
makes COD [14] more challenging than traditional object
detection tasks [38], [50]. It has been proven beneficial to
applications in different fields of art (e.g., photo-realistic
blending [18] and recreational art [8]) and medical diagnosis
(e.g., polyp segmentation [16]).

There is an increasing number of works using sophis-
ticated deep learning techniques [51], [52], [79] to solve
this task, especially after a large-scale dataset was pro-
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Fig. 1. Visual comparisons between our CamoFormer and recent state-
of-the-art methods (e.g., DTINet [44] and ZoomNet [52]) for camou-
flaged object detection. Recent state-of-the-art methods still struggle to
capture the camouflaged objects and distinguish similar backgrounds
around them, while our CamoFormer can capture and segment the
targets more accurately. Best viewed in color.

posed [13]. However, even the state-of-the-art methods still
struggle to segment camouflaged targets with fine shapes
for some complex scenes because of the characteristics of
camouflaged objects as mentioned above. Some examples
are shown in Fig. 1. A promising way to better identify
the camouflaged objects from similar surroundings is to
separately encode the foreground and background cues and
highlight the contrasting information instead of coping with
the foreground and background cues indiscriminately.

As a successful attempt, PFNet [51] reveals that false
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positive and false negative predictions often naturally occur
in the segmentation results. To alleviate this, a distraction
mining strategy is developed in [51] to separately process
the features of the target and background so as to remove
these false predictions. Despite its good performance, PFNet
only focuses on local features for point-level refinement but
neglects the importance of building interactions between the
foreground and background features.

In this paper, we present Masked Separable Attention
(MSA), which considers the way of encoding camouflaged
objects and background features from a new perspective.
Our MSA is built upon the multi-head self-attention mech-
anism but unlike traditional methods that utilize multiple
attention heads simply for enhancing the feature represen-
tations, we propose to leverage different attention heads to
calculate pixel correlations for different regions. To be spe-
cific, we split the self-attention heads into three groups. We
first use two groups of heads to compute pixel correlations
of the foreground and background regions independently.
Our goal is to use the attention scores built within the pre-
dicted foreground generated by a prediction head to index
camouflaged objects from the full-value representations and
similarly for the background. Besides, we preserve a group
of normal attention heads for computing pixel correlations
of the full map, which can help distinguish the camouflaged
objects from a global view. Thus, three groups of heads are
complementary.

Given the proposed MSA, we apply it to an encoder-
decoder architecture [36], [37], [40] to progressively refine
the segmentation map as illustrated in Fig. 2. At each feature
level of the decoder, a segmentation map is predicted and
sent to an MSA block to improve the prediction quality.
This progressive refinement process enables us to attain
high-quality camouflaged object predictions as the feature
resolution increases. As shown in Fig. 1, our CamoFormer
can more accurately identify the camouflaged objects and
generate segmentation maps with finer borders than other
cutting-edge methods.

To validate the effectiveness of CamoFormer, we conduct
extensive experiments on three popular COD benchmarks
(NC4K [47], COD10K [14], and CAMO [34]). On all these
benchmarks, our CamoFormer achieves new state-of-the-
art records compared to recent cutting-edge methods. In
particular, our method achieves 0.793 weighted F-measure
and 0.022 MAE, while the corresponding results for the
second-best model FDNet [79] are 0.731 and 0.030 on the
COD10K-test set. Furthermore, we carry out comprehensive
visualization experiments whose results also show the su-
periority of our CamoFormer over existing COD methods.

In addition to traditional measurements, regarding that
camouflaged objects are quite similar to their surrounding
regions and their scales are often small, we also measure
the segmentation quality around the border regions of the
camouflaged objects. In particular, we propose to compute
the weighted F-measure and mean absolute error scores just
around the object borders, resulting in two new metrics,
namely BR-M and BR-F. Experiments show that on these
two evaluations of border regions, our CamoFormer per-
forms even better than other state-of-the-art methods.

Our main contributions can be summarized as follows:

2

e We present masked separable attention (MSA), a
novel method that uses different self-attention heads
to compute visual similarity for different regions and
meanwhile explicitly model the global dependencies
between foreground and background.

e We present a new network architecture, termed
CamoFormer, where a top-down path is built to
exploit the full potential of our MSA. Experimental
results show that our method achieves better perfor-
mance than previous works.

e We propose two new simple metrics to evaluate the
performance of camouflaged object detection models
on border regions and show that our method per-
forms better at processing boundary areas.

2 RELATED WORK
2.1 Camouflaged Object Detection

Traditional COD methods [1], [17], [20], [21], [31], [77]
extract various hand-crafted features between the camou-
flaged objects and backgrounds to segment the camouflaged
targets. These methods can deal with simple scenes but
show drastic accuracy degradation in complex conditions.
Developing this field via deep learning methods [6], [15],
[45], [46], [76] has become the current trend.

Recently, the mainstream in COD is CNN-based ap-
proaches [14], [27], [28], [51], [52], [74], [79], which can
be categorized into three strategies: i) Multi-scale feature
aggregation: CubeNet [82] accompanies attention fusion
and X-shaped connection to integrate features from multiple
layers sufficiently. ZoomNet [52] processes the input images
at three scales and unifies the scale-specific appearance
features at different scales. ii) Multi-stage strategy: Due to
the concealment of camouflaged objects, SINet [14] pro-
posed first to locate and then distinguish them for better
performance. PreyNet [74] mimics the process of predation
and splits the detection process of camouflaged targets into
initial detection and predator learning. SINetV2 [13] adopts
surrounding connection decoder and group-reversal atten-
tion to improve the performance. SegMaR [28], a multi-stage
training and inference framework, locates the target and
magnifies the object regions to detect camouflaged objects
progressively. iii) Joint training strategy: UJSC [35] leverages
the contradictory information to enhance the detection abil-
ity for both salient object detection and camouflaged object
detection. SLSR [47] combines camouflaged ranking and
camouflaged object detection to construct the joint-training
framework. However, these methods are still powerless for
camouflaged objects with complex shapes.

Our work is also related to the PENet [51] work. How-
ever, PFNet simply splits the feature maps via a distrac-
tion mining strategy, and the features of the target and
background are separately processed to remove the false
predictions. Different from this method, our CamoFormer
takes advantage of self-attention and computes the visual
similarity for different regions using different self-attention
heads to index the targets from the whole feature maps.

2.2 Transformers in Computer Vision

Compared with conventional convolutional neural net-
works [23], [25], [55], [56], [60], Transformers can effi-
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Fig. 2. Overall architecture of our CamoFormer model. First, a pretrained Transformer-based backbone is utilized to extract multi-scale features of
the input image. Then, the features from the last three stages are aggregated to generate the coarse predictions. Next, the progressive refinement
decoder equipped with masked separable attention (MSA) is applied to gradually polish the prediction results. F-TA, B-TA, and TA heads separately
calculate the attention scores in the predicted foreground, background, and the whole image and MSA uses them to identify the camouflaged
objects better. All the generated predictions are supervised by the ground truth.

ciently encode global contextual information and hence
have been widely used in a variety of visual tasks, in-
cluding image classification [10], [61], [64], [70], semantic
segmentation [30], [66], [69], [78], object detection [2], super-
resolution [80], and salient object detection [19], [41], [81].

Transformer-based models are also becoming a new
trend in COD. UGTR [68] explicitly utilizes the proba-
bilistic representational model to learn the uncertainties of
the camouflaged object under the Transformer framework.
DTINet [44] designs a dual-task interactive Transformer
to segment both the camouflaged objects and their de-
tailed borders. TPRNet [75] proposes a transformer-induced
progressive refinement network that utilizes the semantic
information from high-level features to guide the detection
of camouflaged targets. In addition, under the Transformer-
based framework, SLTNet [7] exploits short-term dynamics
and long-term temporal consistency to capture dynamic
camouflaged objects in videos.

Our CamoFormer is also built upon the popular Trans-
former framework. Not focusing on a novel architecture
design, we aim to investigate more efficient ways to uti-
lize self-attention for COD and receive better performance
than other methods. We assign different functionalities to
different attention heads to process the foreground and
background regions separately, which makes our work quite
different from other Transformer-based COD methods.

3 PRoOPOSED CAMOFORMER
3.1 Overall Architecture

Similar to most previous works [14], [16], [29], [52], [79],
we adopt an encoder-decoder architecture to build our
CamoFormer, which is shown in Fig. 2.

Encoder. By default, we adopt PVTv2 [65] as our encoder,
as vision transformers have shown great performance in
binary segmentation tasks [41], [73]. Given an input image
T € REXWX3 e feed it into the encoder to generate multi-
scale feature maps from the four stages, which are denoted
as {E;};_,. Consequently, F; is with spatial size £ x W
and E, is with spatial size 3% X :% Then, we aggregate the
features from the last three stages of the encoder and send
them to a convolutional block, yielding representations s

with higher-level semantics.

Decoder. The decoder is built upon the encoder. The multi-
level semantic features {Ei}le from the encoder are fed
into the decoder. To achieve a better trade-off between
efficiency and performance, we first connect a 1 x 1 con-
volution with Cq = 128 channels to the feature maps at
each level. As shown in Fig. 2, we adopt a progressive way
to refine the features from the top of the encoder. At each
feature level, masked separable attention (MSA) is used for
a better distinguishment of the camouflaged objects and the
background. In the initial level of progressive fusion, the
aggregated feature D, can be written as:

Dy = MSA(E5) - Fup(E4) + Fup(Ey), 1)

where F,,(+) is a bilinear upsampling operation for shape
matching. The aggregated features {Di}?zl in the following
levels can be defined as:

D, = fup(MSA(D¢+1)) - B + E;. )

Unlike previous works [14], [28], [52] that mainly use the ad-
dition operation or the concatenation operation to fuse the
features from different feature levels, we first compute the
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Fig. 3. Diagrammatic details of the proposed F-TA in our MSA. Our B-TA
shares a similar structure except for the mask.

element-wise product between them and then use the sum-
mation operation. We empirically found that such a simple
modification brings about 0.2%+ relative improvement in
terms of S-measure and weighted F-measure averagely on
NC4K [47], COD10K-test [13], and CAMO-test [34].

Loss Function. Following [24], [67], we add side supervision
at each feature level. We denote the predictions generated by
the decoder of CamoFormer as { Pi}?zl. Except for the final
prediction map P, all the other prediction maps P; are used
in the MSAs for the progressive refinement as described
above. During training, each P; is rescaled to the same size
as the input image, and all of them are supervised by the
BCE loss [9] and IoU loss [49]. Following [13], the overall
loss is a summation of multi-stage loss. The total loss of our
CamoFormer can be formulated as follows:

5
‘C(Pa G) = Z‘Cbee(Pi; G) + ‘Ciou(Pia G)7 (3)

i=1

where G is the ground truth annotation.

3.2 Masked Separable Attention

Camouflaged objects are diverse in scale and highly similar
to the background, which makes them difficult to segment
completely. How to accurately identify camouflaged objects
from the background is crucial. We solve this by present-
ing the masked separable attention (MSA), where different
attention heads take charge of different functionalities. We
intend to use part of the attention heads to separately
calculate the attention scores in the predicted foreground
and background regions and use them to identify the cam-
ouflaged objects better.

Our MSA is based on a modified version of self-attention
to save computations, namely Multi-Dconv Head Trans-
posed Attention [71], which we denote as TA for short.
Given an input X € R¥WX® where H and W are respec-
tively the height and width while C'is the channel number,
TA can be formulated as:

T

K
), (4)

where Q, K, V are the query, key, and value matrices that
can be generated by using three separate 1 x 1 convolutions
followed by a 3 x 3 depthwise convolution, and « is a
learnable scaling parameter. In practical use, Eqn. 4 can also

TA(Q,K,V) =V - Softmax( Q
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be extended to a multi-head version, as done in the original
self-attention [62], to augment the feature representations.

Masked Separable Attention. The attention heads in the
above TA are equally utilized for encoding spatial infor-
mation. Differently, in our MSA, we propose to introduce
a prediction mask that can be generated at each feature
level into TA as a foreground-background contrast prior
for better recognizing the camouflaged objects. To achieve
this, we divide all the attention heads into three groups:
foreground-head TA (F-TA), background-head TA (B-TA),
and the normal TA. The structural details of our MSA are
shown in Fig. 3.

To be specific, given a predicted foreground mask Mp,
the formulation of F-TA can be written as:

QrKr

F_TA(QFu KF7 VF) = VF . Softmax(
ap

NG
where Qr, Kr are the masked query and key matrices
that can be produced by multiplying them with Mp and
Vr is the value matrix without masking. In this way, the
features can be refined by building pairwise relationships
within the foreground regions, avoiding the influence of the
background which may contain contaminative information.
Similarly, given the background mask via the broadcast
subtraction M p = 1 — Mp, we can also conduct this process
for the background. Thus, the formulation of B-TA can be
written as:

LK
Rl

Other than the F-TA heads and B-TA heads, the third
group of the heads is kept unchanged as in Eqn. 4, which
is used to build relationships between the foreground and
background. The outputs of all the heads are then con-
catenated and sent into a 3 x 3 convolution for feature
aggregation and map the number of channels to Cy:

B-TA(QB,KB,VB) =Vg- Softmax(

Z = Convsy3([F-TA, B-TA, TA)), ()

where [- - - | is the concatenation operation.

Mask Generation. At each feature level, a mask should be
generated by a 3 x 3 convolution followed by a Sigmoid
function and then used in our MSA. As supervision is added
to each feature level, we directly use the predictions {Pi}fzg
as masks and sent each of them to the corresponding MSA.
Note that we do not binarize the prediction maps but keep
them as continuous maps ranging from 0 to 1, which we
found works better in our experiments.

4 MEASURING BORDER REGIONS

As mentioned in Sec. 1, camouflaged objects often share
similar patterns with their surroundings, making the re-
gions around the object borders difficult to recognize. In
this section, we propose to use the weighted F-measure (wF)
and mean absolute error (M) to evaluate the segmentation
results around the camouflaged region boundaries, resulting
in two new metrics: adaptive border region constrained
weighted F-measure (BR-F) and mean absolute error (BR-
M). The detailed calculation processes of these two metrics
are described as follows.
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aBR@15 Border GT Image

aBR@30

Fig. 4. lllustration for the region of borders. ‘aBR@15’ and ‘aBR@30’
are the adaptive border regions that are generated by dilating the bor-
ders of GT via r with C=15 and r with C=30 dilation kernels respectively.

Fig. 5. Visualization of the dilation operation. Left: dilation operation at
(4, 4) with a dilation rate 5. Right: visualization of the dilation operation
on an image.

Border Region Generation. Given the ground truth (GT),
the borders B € {0,1}"*" are attained via the binary
image border search method [59], as shown in Fig. 4. We
attempt to measure on a relatively larger region, which is
beneficial to observe the texture deviations of borders. The
border regions are generated by dilating the GT borders, as
shown in Fig. 5. To be specific, the value at location (3,))
after dilation can be written as:

BR<Z?.7) :MaX(B((Z’j)’T)), (8)

where B((i,7),r) is a square region in the border map cen-
tered at location (i, j) with side length 2r + 1. Considering
the variety of the target sizes, a border region with a fixed
width is not suitable. Thus, we calculate the dilation rate r
according to the object size:

r=Y G/laxHxW), 9)

where G € [0, 1]7*W is the ground truth for the image and
« is a scaling factor that scales 7 to around 1. We set it to

5

0.05. Then, C - r is the dilation width for the border region,
where C is the base width and r is adjusted according to the
samples.

The whole border region mask BR € {0, W can
be generated by dilating the border via the corresponding
dilation width C' - r for each camouflaged region border
location. We denote the adaptive border region with base
dilation width C as ‘aBR@C’, and we visualize the border
regions in Fig. 4.

Metric Calculation. For the metric BR-M, we calculate the
M [54] value in the chosen border region. Given the border
region mask B R, the BR-M can be defined as:

S|P - G|-BR
SSBR

where P and G are the prediction map and the correspond-
ing GT, which have the same shape as BR.

Similar to BR-M, the metric BR-F is implemented by
calculating the weighted F-measure [48] in the selected
border regions. Following [48], the weighted error map
E" is calculated according to P and G. The four basic
quantities, namely True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (FN) in our BR-F can
be defined as follows:

BR-M = (10)

TPBR =BR-(1-E")-G,
TNPR=BR-(1-EY)-(1-Q),
FPBR =BR-E".(1-Q),
FNP" = BR-E"-G.
Note that the difference between our quantities and the
original ones is that our calculation process is confined to

the border regions. The border region constrained weighted
precision and recall can be written as:

1)

TPBR
Precision®® = -~
TPBR L PPBR )
R HBR TPBR
eca N S
TPBR + FNBR
Finally, the BR-F measure is defined as:
BR-F = (1 4 62) PreCiSionBR . ReCaHBR )

/32 - Precision®® + Recall®#’

5 EXPERIMENTAL RESULTS
5.1

Implementation Details. We implement our CamoFormer
using the Pytorch library [53]. A pretrained PVTv2 [65] on
the ImageNet dataset [32] is employed as the encoder of our
network. Unless otherwise specified, we adopt PVTv2 [65]
as the backbone. Besides, we also report results with other
backbones, e.g., Transformer-based Swin Transformer [42],
CNN-based ResNet [23] and ConvNeXt [43]. SGD with mo-
mentum 0.9 and weight decay 2e-4 is used as the optimizer.
The learning rate is initially set to 5e-3 and decays following
the cosine learning rate strategy. During training, all the
input images are resized to 384x384. The entire model is
trained end-to-end for 60 epochs costing around 7 hours
with a batch size of 6 on an NVIDIA V100 GPU.

Experiment Setup
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Image GT CamoFormer (Ours)

SegMaR [28] ZoomNet [52] SINet [14]

Fig. 6. Visualization comparisons between our CamoFormer and other SOTA methods. Segmentation results are shown in orange.

Datasets. We evaluate our methods on three popular COD
benchmarks, including CAMO [34], COD10K [13], and
NC4k [47]. CAMO comprises 2,500 images, half of which
contain camouflaged objects and half do not. COD10k in-
cludes 5,066 camouflaged, 3,000 background, and 1,934 non-
camouflaged images. NC4K is a large-scale COD dataset
consisting of 4,121 images for testing. Following previous
works [14], [28], [52], we use 1,000 images from the CAMO
dataset and 3,040 images from COD10K for training and the
others for testing.

Metrics. Following [28], [52], [79], we use four golden met-
rics for evaluation, including Structure-measure (S,,) [11],
mean absolute error (M) [54], weighted F-measure (wF) [48],
and adaptive E-measure («E) [12]. M is the absolute dif-
ference between the prediction map and GT. S,, simulta-
neously evaluates region-aware and object-aware structural
similarity between predictions and GT. wF is an exhaustive
measure of both recall and precision. o.E evaluates element-
wise similarity and statistics at image level. Besides, we
draw the precision-recall (PR) curves, Fjs-threshold (Fj)
curves in Fig. 8 and false negative ratios (FNRs) in Fig. 9.

5.2 Qualitative Evaluation

Visualization of Predictions. Fig. 6 presents the visual-
ization samples of our CamoFormer and three previous
SOTA methods. To better show the performance of these
models, several typical samples containing different com-
plex scenarios in the COD field are selected. As shown in the
top row, other methods still struggle to precisely perceive
the camouflaged objects from their similar surroundings.

Sometimes, it is also difficult for them to identify the
camouflaged objects owing to the lack of global contrast
information, as shown in the bottom two rows. In short,
they misjudge some regions or miss parts of the targets
when dealing with complex conditions due to the lack of a
comprehensive understanding of the foreground and back-
ground. In contrast, by explicitly perceiving the foreground-
background clues, our CamoFormer can generate high-
quality segmentation maps of the camouflaged objects even
under difficult conditions.

Object Border Quality Comparison. Camouflaged ob-
jects sometimes possess peculiar-looking shapes, as shown
in Fig. 7. To demonstrate how well our CamoFormer per-
forms when coping with these kinds of objects, we show
some prediction results in Fig. 7 and depict the GT object
borders with white curves. The borders of our predictions
are closer to those of the GT objects, while there are obvious
deviations in the predictions by other methods. These visu-
alizations indicate that our model can segment more precise
camouflaged targets.

5.3 Quantitative Evaluation

We compare our CamoFormer with 12 CNN-based SOTA
COD models, including ZoomNet [52], FDNet [79], Seg-
MaR [28], DGNet [26], SINetV2 [13], C?FNet [58], UJSC [35],
PFNet [51], MGL-R [72], SLSR [47], SINet [14], and
PraNet [16] and 6 Transformer-based methods, including
COS-T [63], TPRNet [75], VST [41], DTINet [44], UGTR [68],
and ICON [81]. For a fair comparison, the prediction results
are directly provided by their authors or generated by their
well-trained models.
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Image GT CamoFormer (Ours)

SegMaR [28] ZoomNet [52] SINet [14]

Fig. 7. Comparisons of our CamoFormer and other SOTA methods on the borders of segmentation. The borders of GT are marked in white, and

the ones of predictions are in orange.

TABLE 1
Comparison of our CamoFormer with the recent SOTA methods. ‘-R’: ResNet50 [23], -C’: ConvNext-base [43], -S’: Swin Transformer-base [42],
-P’: PVTv2-b4 [65]. As can be seen, our CamoFormer-P performs much better than previous methods with either CNN- or Transformer-based
models. ‘1’: the higher the better, ‘|’: the lower the better.

Method NC4K (4,121) COD10K-Test (2,026) CAMO-Test (250)

Swt aEt wFt+ M| Snt aoEt wFt+ M| Smt oEt wEt M|
CNN-Based Methods
PraNet2020 [16] 0.822 0.871 0724 0.059 0.789 0.839 0.629 0.045 0.769 0.833 0.663 0.094
SINet2o20 [14] 0.808 0.883 0.723 0.058 0.776 0.867 0.631 0.043 0.745 0.825 0.644 0.092
SLSR2021 [47] 0.840 0902 0.766 0.048 0.804 0.882 0.673 0.037 0.787 0.855 0.696 0.080
MGL-R2021 [72] 0.833 0.893 0.739 0.053 0.814 0.865 0.666 0.035 0.782 0.847 0.695 0.085
PENet2021 [51] 0.829 0.892 0.745 0.053 0.800 0.868 0.660 0.040 0.782 0.852 0.695 0.085
UJSC,,; [35] 0.842 0907 0771 0.047 0.809 0.891 0.684 0.035 0.800 0.853 0.728 0.073
C?FNetag21 [58] 0.838 0.898 0762 0.049 0.813 0.886 0.686 0.036 0.796 0.864 0.719 0.080
SINetV23022 [13] 0.847 0.898 0.770 0.048 0.815 0.863 0.680 0.037 0.820 0.875 0.743 0.070
SegMaR,,,, [28] 0.841 0905 0.781 0.046 0.833 0.895 0724 0.033 0.815 0.872 0742 0.071
ZoomNetz022 [52] 0.853 0.907 0.784 0.043 0.838 0.893 0.729 0.029 0.820 0.883 0.752 0.066
FDNet2022 [79] 0834 0.895 0750 0.052 0.837 0.897 0.731 0.030 0.844 0903 0.778 0.062
DGNet2o23 [26] 0.857 0907 0.784 0.042 0.822 0.877 0.693 0.033 0.839 0.901 0.769 0.057
CamoFormer-R (Ours) 0.857 0915 0.793 0.041 0.838 0.898 0.730 0.029 0.817 0.884 0.756 0.066
CamoFormer-C (Ours) 0.884 0936 0.833 0.033 0.860 0.923 0767 0.024 0.860 0.920 0.811 0.051
Transformer-Based Methods
COS-T2021 [63] 0.825 0.881 0.730 0.055 0.790 0.901 0.693 0.035 0.813 0.896 0.776 0.060
VST2021 [41] 0.830 0.887 0.740 0.053 0.810 0.866 0.680 0.035 0.805 0.863 0.780 0.069
UGTR2021 [68] 0.839 0.886 0.746 0.052 0.817 0.850 0.666 0.036 0.784 0.859 0.794 0.086
ICON2022 [81] 0.858 0914 0782 0.041 0.818 0.882 0.688 0.033 0.840 0.902 0.769 0.058
TPRNetz022 [75] 0.854 0.903 0.790 0.047 0829 0.892 0.725 0.034 0814 0870 0.781 0.076
DTINet2o22 [44] 0.863 0915 0.792 0.041 0.824 0.893 0.695 0.034 0.857 0912 0.796 0.050
CamoFormer-S (Ours) 0.888 0.941 0.840 0.031 0.862 0932 0772 0.024 0.876 0.935 0.832 0.043
CamoFormer-P (Ours) 0.893 0940 0.850 0.030 0.872 0.934 0.793 0.022 0.878 0.934 0.839 0.044

Performance on Object Regions. As shown in Tab. 1,
our proposed CamoFormer consistently and significantly
surpasses the previous methods on all three benchmarks
without any post-process tricks or extra data for training.
Compared to the recent CNN-based COD methods, such
as ZoomNet [52], FDNet [79], and SegMaR [28], although
they adopt strategies, like multi-stage training and inference
that cost extra computational burden, our CamoFormer still
outperforms them on all benchmarks by a large margin.
Meanwhile, compared to the Transformer-based models
(e.g., TPRNet [75] and DTINet [44]), our method also per-

forms better than them.

Performance on Border Regions. The borders of camou-
flaged targets are challenging to detect due to their irreg-
ular shapes and high similarity with their surroundings.
To quantify the segmentation performance near the border
regions, we calculate the BR-F and BR-M scores described
in Sec. 4, respectively. We attain the border regions by
dilating the boundaries of the GT objects, as shown in Fig. 4.
Note that the area of the region depends on the kernel size
of the dilation operation. Tab. 2 shows the performance
calculated in the border regions ‘aBR@15" and ‘aBR@30'".
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TABLE 2
Comparison of our CamoFormer with recent SOTA methods on ‘aBR@15’ and ‘aBR@30'. -R’: ResNet [23], ‘-C’: ConvNext [43], --P’: PVTv2 [65],
-S’: Swin Transformer [42], “1: the higher the better, ‘|': the lower the better.

NC4K (4,121) COD10K-Test (2,026) CAMO-Test (250)
Method aBR@15 aBR@30 aBR@15 aBR@30 aBR@15 aBR@30
wFT+ M| wF1t M| wF1T BRM| wF1+ M| wFt M| wF{1T M|
CNN-Based Methods
PraNetyo [16] 0.727 0.069 0.756 0.0562 0.635 0.093 0.667 0.074 0.669 0.081 0.688 0.063
SINetyo [14] 0.706 0.071 0.741 0.053 0.610 0.093 0.651 0.074 0.632 0.083 0.654 0.065
SLSR2; [47] 0.746 0.062 0.777 0.046 0.653 0.084 0.689 0.066 0.678 0.076 0.703 0.059
MGL-R2; [72] 0.721 0.067 0.755 0.0560 0.637 0.085 0.676 0.067 0.660 0.079 0.685 0.061
PFNet; [51] 0.736 0.066 0.768 0.049 0.653 0.087 0.689 0.068 0.694 0.075 0.717 0.057
UJSC,, [35] 0.755 0.061 0.785 0.045 0.670 0.081 0.705 0.063 0.712 0.070 0.737 0.053
C%FNety; [58] 0.751 0.063 0.781 0.047 0.667 0.084 0704 0.065 0.709 0.071 0.731 0.055
DGNet»3 [26] 0.762 0.061 0.795 0.045 0669 0.086 0.708 0.067 0.745 0.065 0.776 0.047
SINetV2,; [13] 0.754 0.063 0.788 0.046 0.664 0.087 0.703 0.068 0.734 0.069 0.759 0.051
SegMaR,,, [28] 0.748 0.060 0.783 0.044 0.723 0.070 0.755 0.054 0.737 0.065 0.762 0.049
ZoomNetss [52] 0.767 0.058 0.797 0.043 0.698 0.072 0.735 0.056 0.730 0.066 0.758 0.049
FDNet;. [79] 0.726 0.071 0.765 0.0561 0.668 0.088 0.715 0.066 0.745 0.067 0.777 0.048
CamoFormer-R (Ours) 0.768 0.057 0.800 0.042 0.696 0.071 0.740 0.055 0.725 0.066 0.755 0.048
CamoFormer-C (Ours) 0.806 0.050 0.838 0.035 0.725 0.070 0.765 0.052 0.789 0.055 0.817 0.039
Transformer-Based Methods
VSTo; [41] 0.754 0.061 0.786 0.046 0.677 0.080 0.714 0.062 0.714 0.071 0.736 0.054
UGTR2; [68] 0.725 0.068 0.763 0.050 0.629 0.088 0.673 0.069 0.670 0.079 0.698 0.061
ICON2; [81] 0.742 0.068 0.785 0.048 0.639 0.097 0.682 0.075 0.732 0.071 0.769 0.051
TPRNet2; [75] 0.758 0.061 0.789 0.045 0.677 0.081 0712 0.064 0.718 0.070 0.741 0.053
DTINetos [44] 0.776 0.058 0.808 0.042 0.674 0.084 0714 0.065 0.776 0.060 0.806 0.043
CamoFormer-S (Ours) 0.803 0.051 0.839 0.036 0.710 0.074 0.754 0.055 0.797 0.054 0.831 0.037
CamoFormer-P (Ours) 0.819 0.047 0.850 0.033 0.741 0.066 0.779 0.050 0.805 0.051 0.835 0.036
1.00 q 1.00 q 1.00 q UGTR [68]
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Fig. 8. PR and f3 curves of the proposed CamoFormer and the recent SOTA algorithms on all benchmarks.

Remarkably, CamoFormer achieves much better results than
other methods, demonstrating that our predictions perform
better at GT object boundaries, while the predictions of other
methods are significantly biased.

PR & F3 curves of COD methods. We provide the PR and
Fg curves of our CamoFormer and previous methods on

NC4K, CAMO, and COD10K datasets, as shown in Fig. 8.
Note that the higher the curve is, the better the model per-
forms. It is clear that our CamoFormer (red curve) surpasses
all other methods.

Computational Cost Comparison. Tab. 3 shows the param-
eters and MACs costed by our CamoFormer and the recent
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TABLE 3
Comparisons of our CamoFormer and other SOTA methods on the number of parameters and MACs. The calculation is based on the same code
and these methods are evaluated when keeping the inference settings in the corresponding papers. The inference time, i.e., frames per second
(FPS), is calculated on a single NVIDIA 3090 GPU.

Methods Ours DTINet [44] ZoomNet [52] UGTR [68] C?F-Net [58] UJSC [35] PFNet [51] MGL-R [72] SINet [14]

Params 71.3M 266.3M 33.4M 48.9M 28.4M 218.0M 46.5M 63.6M 48.9M

MACs 47.1G 145.6G 101.8G 500.1G 13.1G 56.2G 26.7G 277.0G 19.4G

FPS 41.3 19.7 24.0 16.6 65.8 34.2 62.6 13.4 56.5
TABLE 4

Ablation study of our CamoFormer variants. ‘Baseline’: the transformer backbone and several convolution layers; ‘+MSA’: Baseline with MSA,;
‘w/TA only’: Baseline equipped with TA and iterative refinement fashion.

Setting NC4K (4,121) COD10K-Test (2,026) CAMO-Test (250)
Swt oEt wF+ M| Smt oEt wFt M| Snt aEt wFt M/
Baseline 0859 0916 0.801 0.043 0830 0904 0719 0032 0838 0891 0.780 0.058
Baseline+MSA 0875 0926 0.815 0036 0848 0906 0735 0029 0858 0918 0.808 0.052
CamoFormer-P w/ TAonly 0.871 0920 0.808 0039 0844 0908 0741 0029 0859 0910 0810 0.055
CamoFormer-P 0.893 0.940 0.850 0.030 0.872 0934 0793 0.022 0878 0934 0.839 0.044
TABLE 5

Ablation study on the proposed MSA. All three branches (‘TA’, ‘F-TA’, and ‘B-TA’) contribute to the overall performance. In addition, eliminating
either the ‘F-TA’ or ‘B-TA’ branch hurts the performance.

Decoder NC4K (4,121) COD10K-Test (2,026) CAMO-Test (250)
Settings TA F-TA B-TA S,1T oET wFT M| SmtT aET wFT M| SmtT aoET wFT M|
1 0865 0921 0.795 0.041 0836 0915 0.724 0.030 0.857 0915 0.797 0.053
2 v 0871 0920 0.808 0.039 0.844 0908 0.741 0.029 0.859 0.910 0.810 0.055
3 v/ 0.881 0927 0824 0.034 0855 0918 0.747 0.026 0.868 0920 0.821 0.053
4 v 0879 0924 0.819 0.035 0851 0915 0.742 0.028 0.856 0.914 0.809 0.055
5 v/ 4 0.887 0937 0.844 0.032 0.869 0930 0.783 0.024 0.875 0.933 0.838 0.045
6 v/ 4 0.885 0933 0.839 0.033 0.860 0924 0.763 0.025 0.866 0926 0.827 0.048
7 v v/ 0.889 0.940 0.845 0.031 0866 0.927 0.773 0.024 0.871 0929 0.832 0.046
8 v v/ 4 0.893 0.940 0.850 0.030 0.872 0934 0.793 0.022 0.878 0.934 0.839 0.044
SOTA methods. As can be seen, our CamoFormer takes an v 199 236 5 186 231 20 225 26.4
acceptable computational cost compared to other methods O 13.7 [ =5 13
but receives much better results. Z
False Negative Ratios (FNRs). We also adopt FNR [81] to v 297, a77 316
. oy .. =] 24.6 211 21.7 208 224 26.0 &L
intuitively show the superiority of our CamoFormer over A 18.0 == : S
other cutting-edge COD models. Note that the false negative S
metric refers to the pixels with wrong predictions on the
target objects, and FNR [81] aims to calculate the proportion 295 277 083 355
. . . . . O 229 — =/ -1 =L
of mispredicted pixels on target objects to all pixels on those = 230 229 Lo 19.9
objects. A lower FNR means the model is better. To be = 132 13.5
specific, the formulation of FNR is defined as follows: I_I
Q g QA Y e . B S P
P Y N TS RO A
¢ % L L L % o B 7.
0, others [ O

SW S FN(zy) 4

FNR =
Yl Y Gla,y)

)

where F'N is a pixel-level indicator to determine which
pixels belong to false negatives, and G is the ground truth.
As shown in Fig. 9, our CamoFormer achieves the lowest

FNR scores across all datasets, which demonstrates the
efficiency of our model in capturing complete targets.

Fig. 9. FNR statistics of 10 methods on three different datasets. The best
results are highlighted in red.

5.4 Method Analysis

Overall Results. We first ablate the network architecture
of CamoFormer. The results are shown in Tab. 4. ‘Baseline’
refers to the model with only the encoder followed by a
convolution for prediction. When our MSA is applied, the
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Stage-5

Stage-2

Fig. 10. Visualization of the feature maps around MSA. The features from Stage 2 and Stage 5 are chosen for comparison.
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Fig. 11. Performance on the NC4K dataset at different feature levels of our progressive fusion strategy.

performance can be clearly improved in terms of all evalua-
tion metrics compared to the ‘Baseline’. Then, we attempt to
add the decoder with only TA left. This progressive fusion
strategy also helps compared to the ‘Baseline’. Finally, we
add our MSA in the decoder as in Fig. 2. We can see that
the performance can be further improved. Both the top and
bottom halves indicate the importance of MSA for COD.

Masked Separable Attention. We then ablate how each
component in MSA helps. Tab. 5 shows the experimental
results. The ‘Baseline’ in the first row can be viewed as a
simple feature pyramid network, i.e., no MSA is added in
Fig. 2. We can observe that each type of attention component
is helpful to improve performance. Though TA yields more
performance gain compared to F-TA and B-TA, combining
either F-TA or B-TA with TA can further improve the results.
In particular, adding all three components yields the best
results on all three datasets. This series of experiments in-
dicates that separately processing the foreground and back-
ground with the proposed MSA is useful for segmenting
camouflaged objects.

Feature Visualization. To provide more promising insights
into our MSA, we also visualize the features around it. Note
that the MSAs in Stages 2 and 5 are chosen for visualization.
As shown in Fig. 10, F-TA and B-TA are able to effectively
obtain the cues of the foreground and background. The fea-
tures from F-TA, B-TA, and TA are complementary to form
a complete camouflaged object. Consequently, the precise
location and detailed information of the camouflaged object
can be captured easily. In addition, compared to the features
in Stage 5, we can distinguish the camouflaged targets more
clearly according to the ones in Stage 2.

MSA in Progressive Fusion. In our model, a top-down path
is built to progressively refine the segmentation map in the
decoder. To show the impact of our MSA in this strategy,
we depict the performance curves at different feature levels

SINet +MSA  ZoomNet +MSA

Fig. 12. Visualization results of SINet [14] and ZoomNet [52] equipped
with the proposed MSA.

Image GT

under the setup of w/ MSA and w/o MSA. The results can
be found in Fig. 11. We can see that from feature level 5
to feature level 1, the performance gap between the model
without MSA (blue line) and the one with MSA tends to
be more significant for all four evaluation metrics. This
indicates that the proposed MSA is compatible with the
progressive fusion decoder.

Generalization of the MSA. To illustrate the generality
of our MSA module, we apply it to some other COD
methods, i.e., SINet [14], and ZoomNet [52]. Specifically, for
other methods, we generate the intermediary predictions
using convolutions with 3x3 kernels and integrate our MSA
module into each unit of their decoders. As shown in Tab. 6,
our MSA brings consistent and significant improvements
to other methods on all the camouflaged object detection
benchmarks. We also present visualization results in Fig. 12.
These results illustrate the generality of our method.

Decoder Width. The width (#channels) of the decoder af-
fects not only the model size but also the inference speed.
Tab. 7 shows the changes in model parameters, computa-
tional cost, and performance when the number of channels
changes. We can see a clear improvement in our model



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

11

TABLE 6
Generalization ability of the MSA module. We apply our MSA module to SINet [14] and ZoomNet [52] and report the results.
Models Computations NC4K (4,121) COD10K-Test (2,026) CAMO (250)
Params MAC S,,t oET wFt M| S,1 eET wFt M| S,1T oEtT wFt M|
SINet [14] 49M 19G 0.808 0.883 0.723 0.058 0.776 0.867 0.631 0.043 0.745 0.825 0.644 0.092
+MSA 57M 25G 0.829 0900 0.752 0.052 0.809 0.883 0.675 0.035 0.790 0.844 0.681 0.077
ZoomNet [52] 33M 102G 0.853 0.907 0.784 0.043 0.838 0.893 0.729 0.029 0.820 0.883 0.752 0.066
+MSA 39M 111G  0.870 0.920 0.800 0.038 0.850 0.904 0.745 0.026 0.835 0.899 0.770 0.061
TABLE 7
Ablation study on the channel numbers in the decoder. All the variants are equipped with our MSA.
Settings Computations NC4K (4,121) COD10K-Test (2,026) CAMO (250)
Params MAC S,, 1 aE wF 1 M Sm 1 aE wF 1 M Sm 1 aE wF 1 M
Cq =32 63M 30G 0.890 0939 0.844 0.031 0.867 0929 0.782 0.024 0.873 0928 0.831 0.046
Cq =064 65M 34G 0.890 0940 0.846 0.031 0.869 0929 0.787 0.023 0.876 0931 0.833 0.046
Cq =128 71M 47G 0.893 0940 0.850 0.030 0.872 0934 0.793 0.022 0.878 0.934 0.839 0.044
Cq =192 82M 69G 0.893 0942 0.851 0.030 0.873 0934 0.790 0.023 0.879 0.934 0.838 0.044
Cq =256 97M 99G 0.892 0942 0.846 0.030 0.870 0932 0.790 0.023 0.876 0931 0.837 0.045

when Cj increases from 32 to 128. However, when the width
changes from 128 to 192, the performance improves little,
but the parameters and computations rise. As a result, Cy
is set to 128 for the trade-off between efficiency and model
performance.

6 CONCLUSIONS

We present CamoFormer for camouflaged object segmenta-
tion. The core of our CamoFormer is the masked separable
attention (MSA) that separately deals with the foreground
and background regions using different attention heads.
To make better use of our MSA, we adopt a progressive
refinement decoder to gradually improve the segmentation
quality at different feature levels in a top-down manner.
Extensive experiments show that CamoFormer surpasses
the existing 18 SOTA models with clear improvements.
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