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Deeply Supervised Salient Object Detection
with Short Connections

Qibin Hou, Ming-Ming Cheng, Xiaowei Hu, Ali Borji, Zhuowen Tu, Philip H. S. Torr

Abstract—Recent progress on salient object detection is substantial, benefiting mostly from the explosive development of
Convolutional Neural Networks (CNNs). Semantic segmentation and salient object detection algorithms developed lately have
been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic
FCN models that do not explicitly deal with the scale-space problem. Holistically-Nested Edge Detector (HED) provides a skip-
layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is
not obvious. In this paper, we propose a new salient object detection method by introducing short connections to the skip-layer
structures within the HED architecture. Our framework takes full advantage of multi-level and multi-scale features extracted from
FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection.
Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms
of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms. Beyond that, we conduct an
exhaustive analysis on the role of training data on performance. Our experimental results provide a more reasonable and powerful
training set for future research and fair comparisons.

Index Terms—Salient object detection, short connection, deeply supervised network, semantic segmentation, edge detection.
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1 INTRODUCTION

THE goal in salient object detection is to identify
the most visually distinctive objects or regions

in an image and then segment them out from the
background. Different from other segmentation-like
tasks, such as semantic segmentation, salient object
detection pays more attention to very few objects that
are interesting and attractive. Such a useful property
allows salient object detection to commonly serve as the
first step to a variety of computer vision applications
including image and video compression [2], [3], image
segmentation [4], content-aware image editing [5], [6],
object recognition [7], weakly supervsied segmantic
segmentation [8]–[11] visual tracking [12], non-photo-
realist rendering [13], [14], photo synthesis [15], [16],
information discovery [17], [18], image retrieval [19],
[20], action recognition [21] etc.

Earlier salient object detection methods were mainly
inspired by cognitive studies of visual attention [22]
where contrast plays the most important role in
saliency detection. Taking this fact into consideration,
various hand-crafted features have been designed, em-
ploying either global or local cues (See [23], [24] for
reviews). However, as these hand-crafted features are
based on the prior knowledge of existing datasets,
they cannot be extended to be successfully useful in
all cases. Although some works have attempted to
develop different schemes to combine these features

• Q. Hou, M.M. Cheng, and X. Hu are with CCCE, Nankai University.
M.M. Cheng is the corresponding author (cmm@nankai.edu.cn).

• A. Borji is with the Center for Research in Computer Vision, University
of Central Florida (aborji@crcv.ucf.edu)

• Z. Tuo is with the University of California at San Diego.
• P.H.S. Torr is with the University of Oxford.
• A preliminary version of this work appeared at CVPR [1]. The source

code are publicly available via our project page: http://mmcheng.net/dss/.

rather than utilizing individual ones, the resulting
saliency maps are still far away from being satisfactory,
specially when encountering complex and cluttered
scenes. To overcome the drawbacks caused by human
priors, learning based methods (e.g. [25]) appear to
better integrate different types of features to improve
the generalization ability. Nevertheless, because many
fusion details are designed manually, the enriched fea-
ture representations still suffer from low contrast and
fail to detect salient objects in cluttered scenes.

In a variety of computer vision tasks, such as im-
age classification [27], [28], semantic segmentation [29],
edge detection [26], [30], object detection [31], [32],
and pedestrian detection [33], convolutional neural net-
works (CNNs) [34] have successfully broken the limits
of traditional hand-crafted features. The emergence of
fully convolutional neural networks (FCNs) [29] have
further boosted the development of these research ar-
eas, providing a more principled learning method. Such
an end-to-end learning tool also motivates recent re-
search efforts of using FCNs for salient object detection
[35], [36]. Benefiting from the enormous amount of
parameters in FCNs, a large margin of performance
gain has been made compared to previous approaches.
The holistically-nested edge detector (HED) [26] model,
which explicitly deals with the scale space problem, has
led to large improvements over generic FCN models
in the context of edge detection. Though the mecha-
nism of fusing the multi-level features extracted from
different scales provides a much more natural way to
edge detection, it is incompetent to do segmentation
related tasks. Edge detection is an easier task since it
does not rely too much on high-level semantic feature
representations. This explains why skip-layer structure
with deep supervision in the HED model does not lead
to obvious performance gain for saliency detection.

http://mmcheng.net/dss/


IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX,NO. XX, XXX. XXXX 2

(a) source & GT (b) results (c) s-out 1 (d) s-out 2 (e) s-out 3 (f) s-out 4 (g) s-out 5 (h) s-out 6

Pr
op

os
ed

H
ED

-b
as

ed
Pr

op
os

ed
H

ED
-b

as
ed

Fig. 1. Visual comparison of saliency maps produced by the HED-based method [26] and ours. Though saliency
maps produced by deeper (4-6) side output (s-out) look similar, because of the introduced short connections, each
shallower (1-3) side output can generate satisfactory saliency maps and hence a better output result.

Experimental results also support this statement as
shown in Fig. 1.

In this paper, we focus on skip-layer structure with
deep supervision. Instead of simply fusing the multi-
level features extracted from different scales, we con-
sider such a problem in a top-down view. As demon-
strated in Fig. 1, we observe that 1) deeper side outputs
encode high-level semantic knowledge and hence can
better locate where the salient objects are. However,
due to the down-sampling operations in FCNs, the
predicted maps are normally with irregular shapes
especially when the input image is complex and clut-
tered (see the bottle image), and 2) shallower side out-
puts capture rich spatial information. They are capable
of successfully highlighting the boundaries of those
salient objects in spite of the resulting messy predic-
tion maps. Based on these phenomenons, an intuitive
idea for yielding better saliency maps is to reasonably
combine these multi-level features. This motivates us to
develop a new method for salient object detection by
introducing short connections to the skip-layer structure
within the HED [26] architecture. By having a series of
short connections from deeper side outputs to the shal-
lower ones, our new framework offers two advantages:

1) high-level features can be transformed to shal-
lower side-output layers and thus can help them
better locate the most salient region, and

2) shallower side-output layers can learn rich low-
level features that can help refine the sparse
and irregular prediction maps from deeper side-
output layers.

By combining features from different levels, the result-
ing architecture provides rich multi-scale feature maps
at each layer, a property that is essentially needed to do
efficient salient object detection. Our approach is fully
convolutional and no other prior information such as
superpixels is needed. It takes only 0.08s to produce
a prediction map with resolution of 300 × 400 pixels.
Other than improving the state-of-the-art results, we
conduct exhaustive analysis on the behavior of differ-

ent training sets as there is no universal training set for
a fair comparison in the salient object detection field.
Our goal is to offer a more unified training set and
meanwhile build a fair benchmarking environment for
future research.

2 RELATED WORKS

Over the past two decades, an extremely rich set of
saliency detection methods have been developed. The
majority of salient object detection methods are based
on hand-crafted local features [38]–[40], global features
[41]–[43], or both [25], [44]. A complete survey of these
methods is beyond the scope of this paper and we
refer the readers to recent survey papers [23], [45] for
details. Here, we mainly focus on discussing recent
salient object detection methods based on deep learning
architectures.

2.1 CNN-Based Saliency Models
Compared with traditional methods that use hand-
crafted features, CNN-based methods have refreshed
all the previous state-of-the-art records in nearly every
sub-field of computer vision, including salient object
detection. In [46], He et al. presented a superpixel-
wise convolutional neural network architectures by
utilizing hierarchical contrast features. For each scale
of superpixels, two contrast sequences were fed into
convolutional networks for building more advanced
features. Finally, different weights were learned to fuse
the multi-scale saliency maps together, yielding a much
more confident one. Li et al. [47] proposed to use multi-
scale features extracted from a deep CNN to derive a
saliency map. By feeding different levels of image seg-
mentation into the deep CNN and aggregating multiple
resulting features, a stack of fully connected layers are
then used to determine on whether each segmented
region is salient. Wang et al. [48] predicted saliency
maps by integrating both local estimation and global
search. A deep neural network is first used to learn
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Fig. 2. Illustration of different architectures. (a) Hypercolumn [37], (b) FCN-8s [29] (c) HED [26], (d) and (e)
different patterns of our proposed architecture. As can be seen, a series of short connections are introduced in
our architecture for combining the advantages of both deeper layers and shallower layers. More interestingly, the
last one can be viewed as a generalized version of all the formers.

local patch features to provide each pixel a saliency
value. Then, the local saliency map, global contrast,
and geometric information are merged together as the
input to another deep neural network, which is used to
predict the saliency score of each region. In [49], Zhao et
al. presented a multi-context deep learning framework
for salient object detection. Two different CNNs are
designed to independently capture the global and local
context information of each segment patch. A final
regressor is used for final saliency decision of each
segment patch. Lee et al. [50] took into account both
high-level semantic features extracted from CNNs and
hand-crafted features. To combine them together, a
unified fully connected neural network was exploited
to estimate saliency of each query region. Liu et al. [36]
designed a two-stage deep network, in which a coarse
prediction map was produced, followed by a recurrent
CNN to refine the details of the prediction map hier-
archically and progressively. In [35], a deep contrast
network was proposed by leveraging the contrast in-
formation of the input images. It combined a pixel-
level fully convolutional stream and a segment-wise
spatial pooling stream. A fully connected conditional
random field (CRF) is also used for further refining
the prediction maps from the contrast network. In [51],
Wang et al. proposed to leverage the advantages of
recurrent fully convolutional networks. By doing so,
their recurrent fully convolutional network allowed
them to continuously refine previous prediction maps
by correcting prediction errors. A pre-training strategy
using semantic segmentation data is exploited for ex-
tracting generic representations of salient objects.

2.2 Skip-Layer Structures
Very recently, great progress has been made in segment
detection because of CNNs and their flexible archi-
tectures. Of these versatile structures, skip-layer struc-
tures have been widely accepted by most researchers
owning to their capability of fusing multi-level and
multi-scale features. Early-stage skip-layer structures
such as Hypercolumn [37] and DCL [35] have made
breakthroughs in their respective fields. They, however,
only simply fuse the skip layers with different scales
for more advanced feature representation building as
shown in Fig. 2(a). Differently, FCN-like structures [29]
(see Fig. 2(b)) considered a better way to utilize multi-
level features, gradually fusing the features from upper

layers to lower ones. In [26], Xie and Tu proposed a
scheme with deep supervision for each side output
(skip layer). Other than fusing all skip layers together,
a series of side losses are added after each side output
for preserving more details of the edge information.
Fig. 2(c) shows a simplified version of these architec-
ture.

Despite the fact that multi-level and multi-scale fea-
tures have been taken into account and significant
progress has been made by these developments very
recently, there is still a large room for improvement
over the generic CNN models that do not explicitly
deal with the scale-space problem.

3 DEEP SUPERVISION WITH SHORT CON-
NECTIONS
This section describes our approach and some imple-
mentation details. Before that, let us first take a look at
the observations.

3.1 Observations
As pointed out in most previous works, a good salient
object detection network should be deep enough such
that multi-level features can be learned. Further, it
should have multiple stages with different strides so
as to learn more inherent features from different scales.
A good candidate for such requirements might be the
HED network [26], in which a series of side-output
layers are added after the last convolutional layer of
each stage in the VGGNet [28]. However, experimental
results show that this architecture is not suitable for
salient object detection. Fig. 1 provides such an illus-
tration. The reasons for this phenomenon are two-fold.
On the one hand, saliency detection, requiring homo-
geneous regions, is quite different from edge detection
that demands a special treatment. A good saliency
detection algorithm should be capable of extracting the
most visually distinctive objects and regions from an
image instead of simple edge information. On the other
hand, the features generated from lower stages are too
convoluted and the saliency maps obtained from the
deeper side-output layers are short of regularity.

To overcome the aforementioned problems, we pro-
pose a top-down method to reasonably combine both
low-level and high-level features for accurate saliency
detection. The following subsections are dedicated to a
detailed description of the proposed approach.
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Fig. 3. The proposed network architecture. Our archi-
tecture is based on VGGNet [28] for better comparison
with previous CNN-based methods. As there are totally
6 different scales in VGGNet, 6 side outputs are intro-
duced, each of which is represented by different colors.
Besides the side loss for each side output, a fusion loss
is employed for capturing features of different levels.

3.2 HED-based saliency detection

To better understand our proposed approach, we start
out with the standard HED architecture [26] as well as
its extended version, a special case of this work, for
salient object detection and gradually move on to our
proposed architecture.

3.2.1 HED architecture

In the HED architecture [26], 5 side outputs are
introduced, each of which is directly connected to
the last convolutional layer of each stage. Let T =
{(Xn, Zn), n = 1, . . . , N} denote the training data set,
where Xn = {x(n)j , j = 1, . . . , |Xn|} is the input image
and Zn = {z(n)j , j = 1, . . . , |Xn|}, z(n)j ∈ [0, 1] denotes
the corresponding continuous ground truth saliency
map for Xn. In the sequel, we omit the subscript n
for notational convenience since we assume the inputs
are all independent of one another. We denote the
collection of all standard network layer parameters
as W. Without loss of generality, we further sup-
pose that there are totally M side outputs. Each side
output is associated with a classifier, in which the
corresponding weights can be represented by w =
(w(1),w(2), . . . ,w(M)). Thus, the side objective function
of HED can be given by

Lside(W,w) =

M∑
m=1

αml
(m)
side

(
W,w(m)

)
, (1)

where αm is the weight of the mth side loss and l
(m)
side

denotes the image-level class-balanced cross-entropy
loss function [26] for the mth side output. Besides, a
weighted-fusion layer is added to better capture the
advantage of each side output. The fusion loss at the
fusion layer can be expressed as

Lfuse(W,w, f) = σ
(
Z, h(

M∑
m=1

fmA
(m)
side )

)
, (2)

No. Layer 1 2 3

1 conv1 2 128, 3× 3 128, 3× 3 1, 1× 1
2 conv2 2 128, 3× 3 128, 3× 3 1, 1× 1
3 conv3 3 256, 5× 5 256, 5× 5 1, 1× 1
4 conv4 3 256, 5× 5 256, 5× 5 1, 1× 1
5 conv5 3 512, 5× 5 512, 5× 5 1, 1× 1
6 pool5 512, 7× 7 512, 7× 7 1, 1× 1

Fig. 4. Details of each side output. (n, k × k) means
that the number of channels and the kernel size are
n and k, respectively. “Layer” means which layer the
corresponding side output is connected to. “1” “2” and
“3” represent three convolutional layers that are used in
each side output. Note that the first two convolutional
layers in each side output are followed by a ReLU layer
for nonlinear transformation.

where f = (f1, . . . , fM ) is the fusion weights, A(m)
side are

activations of the mth side output, h(·) denotes the sig-
moid function, and σ(·, ·) denotes the distance between
the ground truth map and the fused predictions, which
is set to be image-level class-balanced cross-entropy
loss [26]. Therefore, the final loss function is given by

Lfinal
(
W,w, f) = Lfuse

(
W,w, f) + Lside

(
W,w). (3)

HED connects each side output to the last convolu-
tional layer in each stage of the VGGNet [28], respec-
tively conv1 2, conv2 2, conv3 3, conv4 3, conv5 3.
Each side output is composed of a one-channel con-
volutional layer with the kernel size 1× 1 followed by
an up-sampling layer for learning edge information.

3.2.2 Enhanced HED architecture
In this part, we extend the HED architecture for salient
object detection. During our experiments, we observe
that deeper layers can better locate the most salient re-
gions, so based on the architecture of HED we connect
another side output to the last pooling layer (pool5)
in VGGNet [28]. Besides, since salient object detection
is a more difficult task than edge detection, we add
two another convolutional layers with different filter
channels and spatial sizes in each side output, which
can be found in Fig. 4. We use the same bilinear
interpolation operation as in HED for up-sampling. We
also use a standard cross-entropy loss and compute
the loss function over all pixels in a training image
X = {xj , j = 1, . . . , |X|} and saliency map Z = {zj , j =
1, . . . , |Z|}. Our loss function can be defined as follows:

l̂
(m)
side (W, ŵ(m)) = −

∑
zj∈Z

zj logPr
(
zj = 1|X;W, ŵ(m)

)
+ (1− zj) logPr

(
zj = 0|X;W, ŵ(m)

)
, (4)

where Pr
(
zj = 1|X;W, ŵ(m)

)
represents the proba-

bility of the activation value at location j in the mth
side output, which can be computed by h(a(m)

j ), where
Â

(m)
side = {a(m)

j , j = 1, . . . , |X|} are activations of the mth
side output. Similar to [26], we add a weighted-fusion
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Fig. 5. Illustration of short connections in Fig. 3.

layer to connect each side activation. The loss function
at the fusion layer in our case can be represented by

L̂fuse(W, ŵ, f) = σ̂
(
Z,
∑M̂
m=1 fmÂ

(m)
side

)
, (5)

where Â
(m)
side is the new activations of the mth side

output1, M̂ =M +1, and σ̂(·, ·) represents the distance
between the ground truth map and the new fused
predictions, which has the same form as in Eqn. (4).

A comparison of salient object detection results be-
tween the original HED and enhanced HED is shown
in Fig. 7. It can be easily found that a large margin
of about 3% improvement has been achieved. In spite
of such improvement, as shown in Fig. 1, the saliency
maps from shallower side outputs still look messy and
the deeper side outputs produce irregular results as
well. In addition, the deeper side outputs can indeed
locate the salient objects, but some detailed information
is still lost.

3.3 Short connections

The insight of our approach is that deeper side outputs
are capable of finding the location of salient regions but
at the expense of the loss of details, while shallower
ones focus on low-level features but are short of global
information. These phenomenons inspire us to utilize
the following way to appropriately combine different
side outputs such that the most visually distinctive
objects can be extracted.

3.3.1 Formulation

Mathematically, our new side activations R̃(m)
side at the

mth side output can be given by

R̃
(m)
side =


∑M̂
i=m+1 r

m
i R̃

(i)
side

+ Â
(m)
side , for m = 1, . . . , 5

Â
(m)
side , for m = 6

(6)
where rmi is the weight of short connection from side
output i to side output m (i > m). We can drop out
some short connections by directly setting rmi to 0. The

1. We add a new side output in our enhanced HED architecture.

new side loss function and fusion loss function can be
respectively represented by

L̃side(W, w̃, r) =

M̂∑
m=1

αm l̃
(m)
side

(
W, w̃(m), r

)
(7)

and

L̃fuse(W, w̃, f , r) = σ̂
(
Z,
∑M
m=1 fmR̃

(m)
side

)
, (8)

where r = {rmi }, i > m. Note that this time l̃
(m)
side

represents the standard cross-entropy loss which we
have defined in Eqn. (4). Thus, our new final loss
function can be written as

L̃final
(
W, w̃, f , r) = L̃fuse

(
W, w̃, f , r) + L̃side

(
W, w̃, r).

(9)

3.3.2 Construction
The backbone of our new architecture is the enhanced
HED which has been described in Section 3.2.2. Fig. 5
illustrates how to construct short connections from side
output 4 to side output 2. The score maps in side
outputs 3 and 4 are first upsampled by simple bilinear
interpolation and then concatenated to the original
score map in side output 2. The hyper-parameters of
bilinear interpolation can be derived according to the
context. As salient object detection is a class-agnostic
task, we further weight the foregoing score maps which
have been enclosed by a dashed bounding box in Fig. 5
and introduce another 1× 1 convolutional layer as the
new score map of side output 2. A similar approach can
be used for side outputs to which more than one short
connection is connected. For instance, let us assume
that 3 short connections are connected to side output
2. There would be 4 score maps being concatenated
together within the dashed bounding box.

Our architecture can be functionally considered as
two closely connected stages, which we call saliency
locating stage and details refinement stage, respectively.
The main focus of saliency locating stage is on look-
ing for the most salient regions in a given image.
For details refinement stage, we introduce a top-down
method, a series of short connections from deeper side-
output layers to shallower ones. The reason for such
a consideration is that with the help of deeper side
information, lower side outputs can both accurately
predict the salient objects and refine the results from
deeper side outputs, resulting in dense and accurate
saliency maps. We further test the effectiveness of our
proposed architecture by running a number of ablation
experiments and showing the corresponding quantita-
tive and visual results in the next section.

3.4 Implementation Details

Our network is based on the publicly available Caffe
library [52] and the open implementation of FCN [29].
As mentioned above, we choose VGGNet [28] as our
pre-trained model for better comparison with other
works.
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3.4.1 Inference
Although a series of short connections are introduced,
the quality of the prediction maps produced by the
deeper and the shallower side outputs is still unsatis-
factory. Regarding this fact, during the testing phase,
we adopt a more complicated combination of these
side outputs. Let Z̃1, · · · , Z̃6 denote the score map of
each side output, respectively. They can be computed
by Z̃m = h(R̃

(m)
side ). Recall that h(·) in our case is the

sigmoid function. Therefore, the fusion output map can
be computed by

Z̃fuse = h
( 4∑
m=2

fmR̃
(m)
side

)
. (10)

To avoid the negative effect caused by the bad quality
of the prediction map from the deepest and shallowest
side outputs, we also use Z̃2, Ẑ3, and Ẑ4 to help further
fill in the lost details. As a result, the final output map
during inference can be represented by

Z̃final = Mean(Z̃fuse, Z̃2, Z̃3, Z̃4). (11)

Surprisingly, we found that such a combination do help
improve the results by a little margin. This is due to the
fact that although the fusion output map incorporates
the aggregation of each side output, some detailed
information in the fusion output map is still missed.
Regarding the quality of each side output map (see
Fig. 1), we decide to use Eqn. (11) as the final output
map.

3.4.2 Smoothing Method
Though our model can precisely find the salient objects
in an image, the boundary information of the resulting
saliency maps is still lost for those complex scenes. To
further improve spatial coherence and quality of our
saliency maps, we adopt the fully connected condi-
tional random field (CRF) method [53] as a selective
layer during the inference phase.

The energy function of CRF is given by

E(x) =
∑
i

θi(xi) +
∑
i,j

θij(xi, xj), (12)

where x is the label prediction for pixels. To make our
model more competitive, instead of directly using the
predicted maps as the input of the unary term, we
leverage the following unary term

θi(xi) = −
log Ŝi

τh(Ŝi)
, (13)

where Ŝi denotes normalized saliency value of pixel xi,
h(·) is the sigmoid function, and τ is a scale parameter.
The pairwise potential is defined as

θij(xi, xj) = µ(xi, xj)

[
w1 exp

(
−‖pi − pj‖

2

2σ2
α

−

‖Ii − Ij‖2

2σ2
β

)
+ w2 exp

(
−‖pi − pj‖

2

2σ2
γ

)]
,

(14)

where µ(xi, xj) = 1 if xi 6= xj and zero, otherwise. Ii
and pi are pixel value and position of xi, respectively.

Parameters w1, w2, σα, σβ , and σγ control the impor-
tance of each Gaussian kernel.

In this paper, we employ a publicly available imple-
mentation of [53], called PyDenseCRF 2. Since there
are only two classes in our case, we use the inferred
posterior probability of each pixel being salient as the
final saliency map directly.

3.4.3 Parameters
The hyper-parameters used in this work include learn-
ing rate (1e-8), weight decay (0.0005), momentum (0.9),
loss weight for each side output (1). We use full-
resolution images to train our network, and the mini-
batch size is set to 10. The kernel weights in newly
added convolutional layers are all initialized with ran-
dom numbers. Our fusion layer weights are all initial-
ized with 0.1667 in the training phase. The parameters
in the fully connected CRF are determined using cross
validation on the validation set. In our experiments, τ
is set to 1.05, and w1, w2, σα, σβ , and σγ are set to 3.0,
3.0, 60.0, 8.0, and 5.0, respectively.

4 EXPERIMENTS AND ANALYSES

In this section, we introduce utilized datasets and
evaluation criteria and report the performance of our
proposed approach. Besides, a number of ablation ex-
periments are performed for analyzing the importance
of each component of our approach.

4.1 Datasets
We evaluate our approach on 5 representative datasets,
including MSRA-B [43], ECSSD [54], HKU-IS [47], PAS-
CALS [55], and SOD [56], [57], all of which are available
online. These datasets all contain a large number of
images as well as well-segmented annotations and have
been widely used recently.

MSRA-B contains 5,000 images from hundreds of
different categories. Because of its diversity and large
quantity, MSRA-B has been one of the most widely
used datasets in salient object detection literature. Most
images in this dataset have only one salient object, and
hence it has gradually become a standard dataset for
evaluating the capability of processing simple scenes.
ECSSD contains 1,000 semantically meaningful but
structurally complex natural images. HKU-IS is another
large-scale dataset that contains more than 4000 chal-
lenging images. Most of images in this dataset have
low contrast with more than one salient object. PAS-
CALS contains 850 challenging images (each composed
of several objects), all of which are chosen from the
validation set of the PASCAL VOC 2010 segmentation
dataset. We also evaluate our system on the SOD
dataset, which is a subset of the BSDS dataset. It
contains 300 images, most of which possess multiple
salient objects. All of these datasets consist of ground
truth human annotations.

In order to preserve the integrity of the evaluation
and obtain a fair comparison with existing approaches,

2. https://github.com/lucasb-eyer/pydensecrf
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we utilize the same training and validation sets as in
[25] and test over all of the datasets using the same
model.

4.2 Evaluation Metrics

We use three universally-agreed, standard metrics (see
also [23], [23], [41], [58]) to evaluate our model includ-
ing precision-recall curves, F-measure, and the mean
absolute error (MAE). For a given continuous saliency
map S, we convert it to a binary mask B using a
threshold. Then its precision and recall are computed
as precision = |B ∩ Z|/|B| and recall = |B ∩ Z|/|Z|,
respectively, where |·| accumulates the non-zero entries
in a mask. Averaging the precision and recall values
over the saliency maps of a given dataset yields the PR
curve.

To comprehensively evaluate the quality of a saliency
map, the F-measure metric is used, which is defined as

Fβ =
(1 + β2)Precision×Recall
β2Precision+Recall

. (15)

As suggested by previous works, we choose β2 to be
0.3 for stressing the importance of the precision value.

Let Ŝ and Ẑ denote the continuous saliency map and
the ground truth that are normalized to [0, 1]. The mean
absolute error (MAE) score can be computed as

MAE =
1

H ×W

H∑
i=1

W∑
j=1

|Ŝ(i, j) = Ẑ(i, j)|. (16)

4.3 Ablation Analysis

We experiment with different design options and dif-
ferent short connection patterns to illustrate the effec-
tiveness of each component of our method.

4.3.1 Various Short Connection Patterns

Our architecture as shown in Fig. 3 is so flexible that
can be regarded as the generalized model of most
existing architectures, such as those depicted in Fig. 2.
To better show the strength of our proposed approach,
we use different network architectures as listed in Fig. 2
for salient object detection. Besides the Hypercolumns
architecture [37] and the HED-based architecture [26],
we implement three representative patterns using our
proposed approach. The first one is formulated as
follows, which is a similar architecture to Fig. 2(d).

R̃
(m)
side =

r
m
m+1R̃

(m+1)
side + Â

(m)
side , for m = 1, . . . , 5

Â
(m)
side . for m = 6

(17)
The second pattern is represented as follows which is
much more complex than the first one.

R̃
(m)
side =


∑m+2
i=m+1 r

m
i R̃

(i)
side + Â

(m)
side , for m = 1, 2, 3, 4

Â
(m)
side . for m = 5, 6

(18)

The last pattern, the one used in this paper, is given by

R̃
(m)
side =


∑6
i=3 r

m
i R̃

(i)
side + Â

(m)
side , for m = 1, 2

rm5 R̃
(5)
side + rm6 R̃

(6)
side + Â

(m)
side , for m = 3, 4

Â
(m)
side . for m = 5, 6

(19)
The quantitative results are listed in Fig. 7. As can be
seen from Fig. 7, by adding another side output and
two additional convolutional layers in each side output,
we have a performance gain of 2.5 points in terms
of F-measure. In addition, with the increase of short
connections, our approach gradually achieves better
performance. Although there is no performance gain
obtained when Pattern 1 is used compared with the
enhanced HED structure, a gain of 0.8 points can be
achieved when we turn to Pattern 2. Another 0.6 points
gain can also be obtained when Pattern 3 is considered.

4.3.2 Details of Side-Output Layers

We run several ablation experiments to explore the best
side output settings. The detailed information of each
side-output layer in each experiment has been shown in
Fig. 6. We use Pattern 3 in Fig. 7 as our baseline model.
To highlight the importance of different parameters,
we adopt the variable-controlling method that only
changes one parameter at a time. Besides, all the results
are tested on PASCALS dataset for fair comparison.
Compared with the fourth experiment, the first one
exploits more channels but the same F-measure score
is obtained. This means that more channels for each
side output cannot bring in additional performance
gain. In the second experiment, we tried to reduce 1
convolutional layer in each side output but it turns out
that such an operation decreases the performance by
1.5 points. In spite of a small decrease, it is enough
to account for the importance of introducing two con-
volutional layers in each side output. Furthermore, we
attempt to reduce the large kernel size in deeper side
outputs. Similarly, this leads to a slight decrease in F-
measure. All the above experiments demonstrate that
the side output settings we use are reasonable and
appropriate.

4.3.3 Upsampling Operation

In our approach, we use the in-network bilinear inter-
polation to perform upsampling in each side output.
As implemented in [29], we use fixed deconvolutional
kernels for our side outputs with different strides. Since
the prediction maps generated by deep side-output
layers are not dense enough, we also try to use the
“hole algorithm” to make the prediction maps in deep
side outputs denser. We adopt the same technique as
in [35]. However, according to our experiments, using
such a method yields a worse performance. We notice
that as the fusion prediction map gets denser, some
non-salient pixels are wrongly predicted as salient ones
even though the CRF is used thereafter. The F-measure
score on the validation set is decreased by nearly 1%.
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No. Side output 1 Side output 2 Side output 3 Side output 4 Side output 5 Side output 6 Fβ

1 (128, 3× 3)× 2 (128, 3× 3)× 2 (256, 5× 5)× 2 (512, 5× 5)× 2 (1024, 5× 5)× 2 (1024, 7× 7)× 2 0.830
2 (128, 3× 3)× 1 (128, 3× 3)× 1 (256, 5× 5)× 1 (256, 5× 5)× 1 (512, 5× 5)× 1 (512, 7× 7)× 1 0.815
3 (128, 3× 3)× 2 (128, 3× 3)× 2 (256, 3× 3)× 2 (256, 3× 3)× 2 (512, 5× 5)× 2 (512, 5× 5)× 2 0.820
4 (128, 3× 3)× 2 (128, 3× 3)× 2 (256, 5× 5)× 2 (256, 5× 5)× 2 (512, 5× 5)× 2 (512, 7× 7)× 2 0.830

Fig. 6. Comparisons of different side output settings and their performance on PASCALS dataset [55]. (c, k× k)×n
means that there are n convolutional layers with c channels and size k × k. Note that the last convolutional layer in
each side output is unchanged as listed in Fig. 4. In each setting, we only modify one parameter while keeping all
others unchanged so as to emphasize the importance of each chosen parameter.

Scheme Architecture F-measure

1 Hypercolumns [37] 0.818
2 Original HED [26] 0.791
3 Enhanced HED 0.816
4 Pattern 1 (Eqn. (17)) 0.816
5 Pattern 2 (Eqn. (18)) 0.824
6 Pattern 3∗ (Eqn. (19)) 0.830

Fig. 7. The performance of different architectures on
PASCALS dataset [55]. ’*’ represents the pattern used
in this paper.

4.3.4 Data Augmentation
Data augmentation has been proven to be very useful
in many learning-based vision tasks. As done in most
previous works, we flip all the training images horizon-
tally, resulting in an augmented image set with twice
larger than the original one. We found that such an
operation further improves the performance by more
than 0.5%. In addition, we also try to crop the input
images to a fixed size 321×321. However, experimental
results show that such an operation decrease our per-
formance by more than 0.5 points. This may be because
input images with full size contain richer information
that allows our network to better capture the salient
objects.

4.3.5 Different Backbones
We also extend our work by replacing the VGGNet
with ResNet-101 [59] as the backbone. Taking into
account the network structure of ResNet-101, we only
use the bottom 5 side outputs in Fig. 4, which are
connected to conv1, res2c, res3b3, res4b22, and res5c,
respectively. We keep other settings unchanged. We
show the results on the bottom of Fig. 10. With the same
training set, there is a further one-point improvement
on each dataset in terms of F-measure score on average.

4.3.6 The Proposed CRF Model
Most previous works [35], [53] only use the negative log
likelihood as the unary term in their CRF model. Dif-
ferently from them, we introduce a modulating factor
that aims to give positive predictions more confidence
as shown in Eqn. (13). This is reasonable as most of
the predictions are correct through observing the MAE
scores. In our experiments, we found that adding such
a modulating factor helps little on improving the F-
measure scores but is able to further reduce the MAE
scores (i.e. , reduce wrong predictions) by around 0.3
points.

4.4 Comparison with the State-of-the-art

We compare the proposed approach with 7 recent
CNN-based methods, including MDF [47], DS [60],
DCL [35], ELD [50], MC [49], RFCN [51], and DHS [36].
Four classical methods are also considered including
RC [41], CHM [61], DSR [62], and DRFI [25], which
have been proven to be the best in the benchmark study
of Borji et al. [23]. It is worth mentioning that though
more training images is able to bring us better results
as shown in Fig. 14, our results here are mainly based
on 2500 training images from MSRA-B dataset for fair
comparison with existing works.

4.4.1 Visual Comparison
To exhibit the superiority of our proposed approach
compared against the above-mentioned methods, we
select multiple representative images from different
datasets which incorporate a variety of difficult cir-
cumstances, including complex scenes, salient objects
with center bias, salient objects with different sizes, low
contrast between foreground and background, etc., and
show the visual comparisons in Fig. 8. We manually
split the selected images into multiple groups which
are separated by solid lines. We also give each group
multiple tags describing their properties.

Taking all circumstances into account, it can be easily
seen that our proposed method not only highlights
the right salient regions but also produces coherent
boundaries. It is also worth mentioning that thanks
to the short connections, our approach gives salient
regions more confidence, yielding higher contrast be-
tween salient objects and the background. More im-
portantly, it generates connected regions, which greatly
strengthens the ability of our model. These advantages
make our results very close to the ground truth and
hence better than other methods in almost all circum-
stances which are shown in Fig. 8.

4.4.2 PR Curve
We compare our approach with the existing methods
in terms of PR curve here. In Fig. 9, we depict the
PR curves produced by our approach and previous
state-of-the-art methods on 3 popular datasets. It is
obvious that FCN-based methods substantially out-
perform other methods. More importantly, among all
FCN-based methods, the PR curve of our approach
is especially outstanding in the upper left corners of
the coordinates. We can also find that the precision of
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Simple Scene | Complex Scene | Center Bias

Complex Scene | Small Object | Low Contrast

Low Contrast | Complex Texture

Large Object | Low Contrast

Multiple Object | Large Object | Complex Scene

Multiple Object | Transparent Object

Source GT Ours DCL DHS RFCN DS MDF ELD MC DRFI DSR

Fig. 8. Selected results from various datasets. We split the selected images into multiple groups, which are
separated by solid lines. To better show the capability of processing different scenes for each approach, we highlight
the features of images in each group.

our approach is much higher when the recall score is
close to 1, reflecting that our false positives are much
lower than other methods. This also indicates that our
strategy of combining low-level and high-level features
in terms of short connections is essential such that the
resultant saliency maps look much closer to the ground
truth.

4.4.3 F-measure and MAE

We also compare our approach with the existing meth-
ods in terms of F-meature and MAE scores. The quan-
titative results are shown in Fig. 10. As can be seen, our
approach achieves the best score (maximum F-measure
and MAE) on all datasets as listed in Fig. 10. On the
ECSSD and SOD datasets, our approach improves the

current best maximum F-measure by 1 point, which is
a large margin as the values are already very close to
ideal value 1. In regard to MAE scores, our approach
achieves a more than 1-point decrease on MSRA-B and
PASCALS datasets. On the other datasets, there are still
at least 0.09 points improvements. This implies that the
number of wrong predictions in our case is significantly
less than the other methods.

Besides, we also observe that the proposed approach
behaves even better on more difficult datasets, such as
HKUIS [47], PASCALS [55], and SOD [56], [57], which
contain a large number of images with multiple salient
objects. This indicates that our method is capable of
detecting and segmenting the most salient object, while
other methods often fail at one of these stages.
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Fig. 9. Precision (vertical axis) recall (horizontal axis) curves on three popular salient object datasets.

Training MSRA-B [43] ECSSD [54] HKU-IS [47] PASCALS [55] SOD [57]

Methods Dataset #Images Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

RC [41] - - 0.817 0.138 0.741 0.187 0.726 0.165 0.640 0.225 0.657 0.242
CHM [61] - - 0.809 0.138 0.722 0.195 0.728 0.158 0.631 0.222 0.655 0.249
DSR [62] - - 0.812 0.119 0.737 0.173 0.735 0.140 0.646 0.204 0.655 0.234
DRFI [25] MB 2,500 0.855 0.119 0.787 0.166 0.783 0.143 0.679 0.221 0.712 0.215
MC [49] MK 8,000 0.872 0.062 0.822 0.107 0.781 0.098 0.721 0.147 0.708 0.184
ELD [50] MK 9,000 0.914 0.042 0.865 0.981 0.844 0.071 0.767 0.121 0.760 0.154
MDF [47] MB 2,500 0.885 0.104 0.833 0.108 0.860 0.129 0.764 0.145 0.785 0.155
DS [60] MB 2,500 - - 0.810 0.160 - - 0.818 0.170 0.781 0.150
RFCN [51] MK 10,000 0.926 0.062 0.898 0.097 0.895 0.079 0.827 0.118 0.805 0.161
DHS [36] MK + D 9,500 - - 0.905 0.061 0.892 0.052 0.820 0.091 0.823 0.127
DCL+ [35] MB 2,500 0.916 0.047 0.898 0.071 0.907 0.048 0.822 0.108 0.832 0.126

Ours MB 2,500 0.927 0.028 0.915 0.052 0.913 0.039 0.830 0.080 0.842 0.118
Ours† MB 2,500 0.936 0.030 0.928 0.048 0.920 0.035 0.838 0.092 0.850 0.119

Fig. 10. Quantitative comparisons with 11 methods on 5 popular datasets. The ResNet-101 [59] version of our
approach (i.e. ‘Ours†’) clearly outperforms its VGGNet version. For fair comparison, we exclude ‘Ours†’ and highlight
the best result of each column in bold. Here we use the initials of each dataset for convenience.

Methods JSOD [63] MSRA-B [43] ECSSD [54]

Wang et al. [64] 90.64% 89.26% 70.50%
SSVM [63] 99.22% 98.66% 94.40%

Ours 98.84% 99.05% 96.8%

Fig. 11. The prediction accuracy of our saliency exis-
tence branch compared to SSVM [63] and Wang et
al. [64]. The best result of each column is highlighted
in bold.

4.5 The Existence of Saliency

To date, most existing salient object detection methods
focus on datasets in which at least one salient object
exists. However, in many real-world scenarios, salient
objects do not always exists. Therefore, methods based
on the above assumption may easily lead to incorrect
prediction results when applied to scenes without any
salient objects in them. To solve this problem, we
propose to introduce another branch into our network
to predict the saliency existence of the input image. The
new branch is composed of a global average pooling
layer, followed by a multi-layer perceptron (MLP) as
the regressor to recognize the existence of saliency
as done in many classification networks [28], [59].
The global average pooling layer is used to transform
feature maps with different shapes into the same size
so that the resulting feature vectors can be fed into

the MLP. Like [28], [32], the MLP here consists of
three fully-connected layers, all of which are with 1,024
neurons except the last one which has two. The softmax
loss is used to optimize the new branch.

In our experiments, we use the same training set
as in [63], which contains 5,000 background images
(i.e. images without salient objects in them) and 5,000
images from MSRA10K [41]. For these background
images, the gradients from the salient object detection
module are not allowed to back-propagate so that the
resulting prediction maps would not be interfered.
We found that this operation is essential. The hyper-
parameters used here are the same to our salient object
detection experiments. We train our network for 24,000
iterations and decrease the learning rate by a factor
of 10 at 20,000 iterations. We test our model on three
datasets, including JSOD [63], MSRA-B [43] and ECSSD
[54]. Fig. 11 lists the results compared to another two
works SSVM [63] and Wang et al. [64]. Since there is
a clear separation between JSOD dataset (mostly con-
taining pure textures) and other two datasets (MSRA-
B and ECSSD mostly contain images with clear salient
objects), the classification results on all datasets have
been already saturated (very close to the ideal value
“1”). Thus, we expect more challenging dataset which
better reflect real world difficulties would be developed
in near future.
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Source GT Ours Source GT Ours

Fig. 12. Failure cases selected from multiple datasets.
As can be seen, most cases are caused by complex
background, low contrast between foreground and back-
ground, and transparent objects.

4.6 Timing

Our network is fully convolutional, which allows it to
run very fast compared against most previous salient
object detection methods. When trained on the MSRA-
B dataset which contains 2,500 training images, our
network takes less than 8 hours for 12,000 iterations.
Interestingly, though 10,000 iterations are enough for
convergence, we found another 2,000 iterations still
bring us a small performance gain in MAE.

During the inference stage, it takes us about 0.08s
to process an input image of size 300 × 400. This is
extremely faster than most of the previous works, such
as DCL [35] which need more than 1s for each image of
the same size. With our CRF layer considered, another
0.4 seconds are needed. As a result, our overall time
cost is less than 0.5s for an image of size 300× 400.

5 DISCUSSION

In this section, we conduct useful analysis on our
proposed approach, which we believe would be helpful
for researchers to develop more powerful methods.

5.1 Failure Case Analysis

Some failure predictions of our approach have been
shown in Fig. 12. As can be seen, these failure cases can
be categorized into three circumstances in general. The
first one is actually the common defect of CNN-based
salient object detection methods, in which the salient
objects cannot be completely segmented out, leaving a
small part of the salient object missed. Typical examples
are the images shown in the first row of Fig. 12. In
the second circumstance, the main body of the salient
object cannot be extracted or non-salient regions are
predicted to be salient. As shown in the middle row
of Fig. 12, this case is mostly caused by complex
backgrounds and very low contrast. The last type of
failure cases is caused by transparent objects as shown
in the bottom row of Fig. 12. Though our approach can
detect some parts of the transparent objects, to segment
the complete objects out is still very difficult.

We argue that three possible remedies can be used
to solve the aforementioned problems. First of all, a
promising solution is to provide more prior knowledge
on segment level so that regions with similar textures

or colors can be detected simultaneously. Because of
the internal structure of CNNs, the correlations of two
positions in the score map are decided by the learnable
weights of the former layers, making this problem diffi-
cult to be solved by the networks themselves. Segment-
level information allows CNNs to correct those wrong
predictions in the Circumstance 1 mentioned above. In
addition, segment-level information can also serve as
a post-processing tool to further refine the predicted
saliency maps by a simple voting strategy. Secondly,
more powerful training data should be presented, in-
cluding both simple and complex scenes. As listed
in Fig. 14, training data with complex scenes can
substantially help improve the performance on both
easy and difficult datasets. Another solution should be
designing more advanced models and then extracting
more powerful feature representations to deal with
challenging inputs with complex structures [65].

5.2 Benchmarking Training Set
The selection of training set is one of the important
aspects for a learning based algorithm. A good training
set will definitely improve the learning ability, leading
to a more generative model that can perform well
on almost all scenes, even with complex background.
However, the training sets of recent learning based
approaches are different and none of these works have
explored which training set is the best. Fig. 10 lists
the details of different training sets that existing ap-
proaches have used. Furthermore, training on different
datasets with different sizes makes the comparisons
unfair. Albeit the number of training images is not
proportional to the performance gain, the size and
quality of different training sets break the fair compar-
isons among different approaches. One can observe in
Fig. 10 that some of them only use a training set with
2,500 images while some others leverage around 10,000
images for training.

In this section, we attempt to thoroughly analyze the
effect of utilizing different datasets for training based
on our proposed approach. Our goal is to provide a
new, unified, convincing, and large-scale training set
based on existing datasets for future research. To do
so, we perform a number of experiments and show ex-
haustive comparisons among 6 widely-used and pub-
licly available datasets, which can be found in Fig. 13.
Notice that all the training lists will be made publicly
available. During testing phase, we use both the max
F-measure score and MAE score as measuring metrics.
Notice that since most datasets contain more than 5,000
images, each model is trained for 16,000 iterations here.
An exception is the model trained on ECSSD with 6,000
iterations.

5.2.1 Dataset Quality Measuring
To exhibit the quality of datasets better, each time we
train on one of them, except for the SOD dataset which
has only 300 images and the PASCALS dataset which
has a lowly consistent behavior, and test on all the test
sets. As ECSSD contains less than 2,000 images, all the
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MSRA-B ECSSD HKU-IS PASCALS SOD DUT-OMRON

Training Set Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

MSRA-B (2500) 0.920 0.043 0.908 0.064 0.902 0.049 0.824 0.101 0.836 0.126 0.764 0.070
ECSSD (1000) 0.880 0.062 - - 0.891 0.051 0.807 0.100 0.840 0.107 0.720 0.085
HKU-IS (2500) 0.893 0.057 0.898 0.070 0.919 0.041 0.817 0.099 0.820 0.133 0.737 0.085
DUT-OMRON (3103) 0.890 0.060 0.895 0.079 0.888 0.059 0.811 0.113 0.814 0.141 0.828 0.051
MSRA10K (6000) - - 0.909 0.068 0.901 0.054 0.826 0.107 0.822 0.140 0.769 0.074

Fig. 13. Performance when different training sets are used. The best results are highlighted in bold. Notice that all
the results here are without CRF.

images are used for training and hence no image is
left for testing. For the remaining large-scale datasets,
if default splits are provided then they will be used
directly. Otherwise, we split the dataset in a ratio of
6:1:3 for training, validation, and testing, respectively.

Detailed experimental results have been shown in
Fig. 13. As there is a large overlap between MSRA-
B and MSRA10K datasets, we only show the results
on MSRA-B instead of both. According to the results
shown in Fig. 13, the following conclusion can be
drawn. First, the best result on each dataset is always
obtained by training on the corresponding training set,
and the phenomenon is especially obvious for DUT-
OMRON. This might be caused by the characteristics
of the images in each dataset, making different datasets
favor different features. Consequently, we argue that it
is inappropriate to directly compare performance num-
bers that are achieved by different models trained on
different datasets (see also Fig. 13). Second, having
more training images does not necessarily entail better
performance. As can be seen in Fig. 13, training on EC-
SSD dataset allows us to achieve the best performance
on the SOD dataset despite of having only 1,000 train-
ing images. In regard to the above-mentioned issues, a
compromise solution is to construct a unified, composite,
and versatile dataset.

5.2.2 Beyond Training on Individual Datasets

We select 4 datasets from Fig. 13 to build composite
datasets for comparisons. Though the MSRA10K is
more than twice bigger than MSRA-B dataset, models
trained on it have a competitive performance compared
to those trained on the MSRA-B dataset. Here we
just keep MSRA-B for training due to its high-quality
images and annotations. Therefore, there are totally 11
different combinations which have been shown in the
second column of Fig. 14. During the testing phase,
we also use the six test sets mentioned above for fair
comparisons.

From the results in Fig. 14, the following conclusions
can be drawn. First of all, a larger training set does not
necessarily mean higher test performance. This phe-
nomenon can be observed through comparing Scheme
3 with other schemes. Despite only 3,500 training im-
ages, this combination performs better than those with
more than 6,000 training images. It is true that the
quality of annotations might be an essential reason that
causes such a problem. However, such a consideration
is beyond the scope of this paper. All conclusions here

are based on the assumption that each dataset we use
is with well-segmented annotations.

Second, an inappropriate combination of datasets
may result in worse performance compared with indi-
vidual datasets. By comparing schemes 4 and 0, one
can find that despite better performance on HKU-
IS, PASCALS, and SOD datasets there are still slight
decreases when testing on MSRA-B and DUT-OMRON
datasets.

Through this series of experiments, we aimed to
emphasis that a training set with a large quantity
of images may not be capable of bringing in better
performance gain. A good training set should take
into account as many cases as possible. However, be-
cause of the diversity of existing datasets, it is hard
to obtain a convincing dataset that can behave the
consistency among all existing datasets. In regard to the
current state in salient object detection, we recommend
using our Scheme 11 in Fig. 14 as training set for
fair comparison and fitting decreasing performance
bias caused by different training sets. Another severe
problem in salient object detection is that most datasets
are no longer challenging. An explicit effect is that
the differences between different models are difficult
to be distinguished because of the close performance
on existing datasets. We hope that more challenging
datasets with complex scenes and high consistency
would be presented in the near future.

6 CONCLUSION
In this paper, we presented a deeply supervised net-
work for salient object detection. Instead of directly
connecting loss layers to the last layer of each stage,
we introduce a series of short connections between
shallower and deeper side-output layers. With these
short connections, the activation of each side-output
layer gains the capability of both highlighting the entire
salient object and accurately locating its boundary. A
fully connected CRF is also employed for correcting
wrong predictions and further improving spatial coher-
ence. Our experiments demonstrate that these mech-
anisms result in more accurate saliency maps over a
variety of images. Our approach significantly advances
the state-of-the-art and is capable of capturing salient
regions in both simple and difficult cases, which further
verifies the merit of the proposed architecture.
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Scheme Training Set MSRA-B HKU-IS PASCALS SOD DUT-OMRON

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

0 MB (2500) 0.920 0.043 0.902 0.049 0.824 0.101 0.836 0.126 0.764 0.070
1 D + E (4103) 0.901 0.053 0.907 0.048 0.832 0.090 0.846 0.109 0.832 0.050
2 H + E (3500) 0.897 0.054 0.923 0.040 0.825 0.092 0.849 0.108 0.753 0.078
3 D + H (5603) 0.905 0.053 0.924 0.042 0.832 0.096 0.839 0.130 0.833 0.052
4 MB + E (3500) 0.916 0.045 0.909 0.045 0.835 0.091 0.852 0.111 0.758 0.073
5 MB + H (5000) 0.920 0.045 0.925 0.040 0.834 0.095 0.845 0.121 0.774 0.072
6 MB + D (5603) 0.921 0.046 0.910 0.050 0.837 0.099 0.845 0.127 0.840 0.049
7 MB + E + D (6603) 0.921 0.046 0.915 0.048 0.842 0.091 0.858 0.115 0.839 0.051
8 MB + H + D (8103) 0.923 0.046 0.926 0.043 0.837 0.096 0.855 0.123 0.840 0.051
9 MB + E + H (6000) 0.921 0.045 0.926 0.040 0.841 0.090 0.860 0.111 0.786 0.069

10 E + D + H (6603) 0.911 0.050 0.925 0.041 0.844 0.087 0.854 0.110 0.835 0.051
11 MB + E + D + H (9103) 0.923 0.046 0.927 0.042 0.844 0.091 0.864 0.113 0.843 0.051

Fig. 14. Detailed information of different training sets and the corresponding results on 5 datasets. The best results
are highlighted in bold. All the results are obtained without any post-processing. Here we use the initials of each
dataset for convenience.

CAST YESS Program, and IBM Global SUR award.
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[53] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected crfs with gaussian edge potentials,” in Adv. Neural Inform.
Process. Syst., 2011.

[54] Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,”
in IEEE Conf. Comput. Vis. Pattern Recog., 2013, pp. 1155–1162.

[55] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The
secrets of salient object segmentation,” in IEEE Conf. Comput.
Vis. Pattern Recog., 2014, pp. 280–287.

[56] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of hu-
man segmented natural images and its application to evaluating
segmentation algorithms and measuring ecological statistics,” in
Int. Conf. Comput. Vis., 2001, pp. 416–423.

[57] V. Movahedi and J. H. Elder, “Design and perceptual validation
of performance measures for salient object segmentation,” in
IEEE Conf. Comput. Vis. Pattern Recog. Worksh., 2010, pp. 49–56.
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