IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014

Struck: Structured Output Tracking
with Kernels

Sam Hare, Amir Saffari, Stuart Golodetz, Vibhav Vineet, Ming-Ming Cheng,
Stephen L. Hicks and Philip H. S. Torr, Senior Member, IEEE

Abstract—Adaptive tracking-by-detection methods are widely used in computer vision for tracking arbitrary objects. Current
approaches treat the tracking problem as a classification task and use online learning techniques to update the object model.
However, for these updates to happen one needs to convert the estimated object position into a set of labelled training examples,
and it is not clear how best to perform this intermediate step. Furthermore, the objective for the classifier (label prediction)
is not explicitly coupled to the objective for the tracker (accurate estimation of object position). In this paper, we present a
framework for adaptive visual object tracking based on structured output prediction. By explicitly allowing the output space to
express the needs of the tracker, we are able to avoid the need for an intermediate classification step. Our method uses a
kernelized structured output support vector machine (SVM), which is learned online to provide adaptive tracking. To allow for
real-time application, we introduce a budgeting mechanism which prevents the unbounded growth in the number of support
vectors which would otherwise occur during tracking. Experimentally, we show that our algorithm is able to outperform state-
of-the-art trackers on various benchmark videos. Additionally, we show that we can easily incorporate additional features and
kernels into our framework, which results in increased tracking performance. As a further contribution, we show that an optimised

GPU implementation of Struck can be made to run at high frame-rates without sacrificing tracking performance.

Index Terms—tracking-by-detection, structured output SVMs, budget maintenance, GPU-based tracking

1 INTRODUCTION

Visual object tracking is one of the core problems of
computer vision, with wide-ranging applications including
human-computer interaction, surveillance and augmented
reality, to name just a few. For other areas of computer
vision which aim to perform higher-level tasks such as
scene understanding and action recognition, object tracking
provides an essential component.

For some applications, the object to be tracked is known
in advance and it is possible to incorporate prior knowledge
when designing the tracker. There are other cases, however,
where it is desirable to be able to track arbitrary objects,
which may only be specified at runtime. In these scenarios,
the tracker must be able to model the appearance of the
object on-the-fly and adapt this model during tracking to
take into account changes caused by object motion, lighting
conditions and occlusion. Even when prior information
about the object is known, having a framework with the
flexibility to adapt to appearance changes and incorporate
new information during tracking is attractive, and in real-
world scenarios is often essential for successful tracking.

An approach to tracking which has become particularly
popular recently is tracking-by-detection [1], which treats
the tracking problem as a detection task applied over time.

e S. Hare was with the Department of Computing, Oxford Brookes
University, and is now a co-founder of Obvious Engineering.

e A. Saffari was with Sony Europe Ltd., and is now with Affectv.

e S. Golodetz and S.L. Hicks are with the Nuffield Department of Clinical
Neurosciences, and V. Vineet, M.-M. Cheng and P.H.S. Torr are with
the Department of Engineering Science, University of Oxford.

Classification

]
- . N
| Sampler :
1 \L J/ :
| ¥ -
Structired v (0 Labeller h '
ructure ! '
output : A MSupewised :
A 1 + !
prediction ' '
' M Semi-]
¢ 1 ! supervised '

1
(o)1 O |
: \ J o

Fig. 1: Different adaptive tracking-by-detection paradigms:
given the current estimated object location, traditional ap-
proaches (shown on the right-hand side) generate a set of
samples and, depending on the type of learner, produce
training labels. Our approach (left-hand side) avoids these
steps and operates directly on the tracking output.

This popularity is due in part to the great deal of progress
made recently in object detection, with many of the ideas
being directly transferable to tracking. Another key factor
is the development of methods which allow the classifiers
used by these approaches to be trained online, providing a
natural mechanism for adaptive tracking [2]-[4].

Adaptive tracking-by-detection approaches maintain a
classifier trained online to distinguish the target object from

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 2

its surrounding background. During tracking, this classifier
is used to estimate object location by searching for the
maximum classification score in a local region around the
estimate from the previous frame, typically using a sliding-
window approach. Given the estimated object location,
traditional algorithms generate a set of binary labelled
training samples with which to update the classifier online.
As such, these algorithms separate the adaptation phase of
the tracker into two distinct parts: (i) the generation and
labelling of samples; and (ii) the updating of the classifier.

While widely used, this separation raises a number of
issues. Firstly, it is necessary to design a strategy for
generating and labelling samples, and it is not clear how
this should be done in a principled manner. The usual
approaches rely on predefined rules such as the distance of a
sample from the estimated object location to decide whether
a sample should be labelled positive or negative. Secondly,
the objective for the classifier is to predict the binary label
of a sample correctly, while the objective for the tracker is
to estimate object location accurately. Because these two
objectives are not explicitly coupled during learning, the
assumption that the maximum classifier confidence corre-
sponds to the best estimate of object location may not hold
(a similar point was raised by Williams et al. [5]). State-
of-the-art adaptive tracking-by-detection methods mainly
focus on improving tracking performance by increasing
the robustness of the classifier to poorly labelled samples
resulting from this approach. Examples of this include using
robust loss functions [6], [7], semi-supervised learning [£],
[9], or multiple-instance learning [3], [10].

In this paper, we take a different approach and frame
the overall tracking problem as one of structured output
prediction, in which the task is to directly predict the change
in object location between frames. We present a novel and
principled adaptive tracking-by-detection framework which
integrates the learning and tracking, avoiding the need for
ad-hoc update strategies (see Figure 1).

Most recent tracking-by-detection approaches have used
variants of online boosting-based classifiers [2]-[4]. In
object detection, boosting has proved to be very successful
for particular tasks, most notably face detection using
the approach of Viola and Jones [!1]. Elements of this
approach, in particular the Haar-like feature representation,
have become almost standard in tracking-by-detection re-
search. The most successful research in object detection,
however, has tended to make use of SVMs rather than
boosting, due to their good generalisation ability, robust-
ness to label noise, and flexibility in object representation
through the use of kernels [12]-[14]. Because of this flexi-
bility of SVMs and their natural generalisation to structured
output spaces, we make use of the structured output SVM
framework of Tsochantaridis et al. [15]. In particular, we
extend the online structured output SVM learning method
proposed by Bordes ef al. [16], [17] and adapt it to the task
of adaptive object tracking. We find experimentally that the
use of our framework results in large performance gains
over state-of-the-art tracking-by-detection approaches.

A structured output SVM framework has previously been

applied to the task of object detection by Blaschko and
Lampert [12]. In contrast to their work, in our setting there
is no offline labelled data available for training (except the
first frame, which is assumed to be annotated) and instead
online learning is used. However, online learning with
kernels suffers from the curse of kernelisation, whereby
the number of support vectors increases with the amount
of training data. Therefore, in order to allow for real-
time operation, there is a need to control the number of
support vectors. Recently, approaches have been proposed
for online learning of classification SVMs on a fixed budget
[18], [19], meaning that the number of support vectors is
constrained to remain within a specified limit. We apply
similar ideas in this paper and introduce a novel approach
for budgeting which is suitable for use in an online struc-
tured output SVM framework. We find empirically that the
introduction of a budget brings large gains in terms of
computational efficiency, without impacting significantly on
the tracking performance of our system.

An earlier version of this paper appeared in [

extend it here in the following ways:

1) We perform additional experiments to quantify the
effects of structured learning in comparison with a
baseline classification SVM (§4.2).

2) We show how Struck can be implemented on the GPU
and demonstrate how high frame-rates can be achieved
without sacrificing tracking performance (§5).

3) We discuss recent benchmarks in which Struck
achieved state-of-the-art performance (§6).

This paper is organised as follows: in §2, we briefly
review related work; in §3, we describe the Struck tracker;
in §4, we perform experiments to compare Struck to other
trackers, and evaluate the effects on performance of struc-
tured learning and kernel combination; in §5, we present
our GPU implementation of Struck; in §6 we discuss third-
party tracking benchmarks and in §7 we conclude.

1. We

2 RELATED WORK

Due to the importance of the tracking problem, a wide
variety of different approaches have been proposed to solve
it over the years. Whilst a comprehensive review of tracking
techniques is beyond the scope of this paper, we direct
the reader to [21] for a survey, and also to [22], [23] for
some benchmarks that compare a significant number of
trackers on large datasets (see also §6). We focus here on
a representative selection of recent trackers.
Dictionary-based trackers maintain dictionaries of object
templates and aim to represent candidate object regions
in a new frame using combinations of these templates.
A popular idea is to try and represent the candidates
sparsely using ¢;-norm minimization [24]-[26]. Prediction
from one frame to the next is often done using particle
filtering [27], with a sensor model that assigns higher
confidence to candidates that are more easily represented
by the templates. For example, Xing et al. [26] describe an
approach that combines short-term, medium-term and long-
term dictionaries to achieve a compromise between adap-
tivity (the short-term dictionary will adapt more quickly

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 3

to new data) and robustness (the long-term dictionary will
remember more of what the object originally looked like).
Wang et al. [25] describe another interesting dictionary-
based approach that aims to learn templates that capture
distinct aspects of the object.

Ensemble-based trackers combine the results of a set of
individual ‘weak’ classifiers to form a strong classifier that
can be used to predict an object’s bounding box in a new
frame. For example, Cao and Xue [28] describe an adap-
tive random forest method that maintains a collection of
candidate decision trees and picks half of them each frame
to form an ensemble. (Other techniques that incorporate
random forests can be found in [29], [30].) Bai et al. [31]
combine weak classifiers trained on 8 x 8 patches within the
object’s bounding box using weight vectors sampled from
a Dirichlet distribution that is updated over time. Wang
et al. [32] show how to combine an ensemble of different
trackers (including Struck) using a conditional particle filter
approach to try and meld the best features of the trackers.

Segmentation-based trackers [33]-[35] actually segment
(possibly coarsely) the object being tracked in each frame,
so as to try and avoid the problem of drift that occurs when
trackers inadvertently incorporate parts of the background
in their object representation. For example, Duffner and
Garcia [33] describe PixelTrack, an approach that co-trains
a probabilistic segmentation model alongside a pixel-based
Hough model so as to better handle non-rigid deformations
of the tracked object between frames.

Circulant trackers are an interesting recent type of
tracker that exploit the circulant structure of adjacent sub-
windows in an image to achieve extremely fast tracking.
The original such tracker, CSK [36], works by evaluating
a classifier trained using kernel regularised least squares
(KRLS) quickly at all sub-windows around the estimated
target location and maximising the response. Danelljan ef
al. [37] build on this by introducing colour attributes to
achieve superior performance on colour sequences.

A number of trackers we survey do not fall into any of
the above categories. For example, Pernici and Del Bimbo
[38] describe a tracker called ALIEN based on Nearest
Neighbour classifiers that tracks using an oriented rather
than axis-aligned bounding box, handles occlusions well
and is designed for long-term tracking. Lu et al. [39] de-
scribe an interesting approach based on And-Or graphs that
achieves good tracking performance in exchange for some
speed. Finally, Zhang and van der Maaten [40] describe an
appealing multi-object tracker based on structured SVMs
that can be co-opted for single-object, part-based tracking.

Whilst some of the trackers we surveyed achieve better
tracking performance than Struck on the video sequences
they tested, there remain trade-offs involved, e.g. in terms
of speed [31], [32], [39], difficulties with fast motion
[32] or dependence on colour features [37]. As a result,
we believe that our GPU-based implementation of Struck,
which achieves high frame-rates, copes comparatively well
with fast motion and works equally well on either greyscale
or colour sequences, is state-of-the-art.

3 ONLINE STRUCTURED OUTPUT TRACKING
3.1

In this section we provide an overview of traditional
adaptive tracking-by-detection algorithms, which attempt to
learn a classifier to distinguish a target object from its local
background.

Typically, the tracker maintains an estimate of the po-
sition p € P of a 2D bounding box containing the target
object within a frame of a video sequence f; € F, where
t=1,...,T is the time. Given a bounding box position p,
a classifier is applied to features extracted from an image
patch within the bounding box x} € X. The classifier
is trained with example pairs (x,z), where z = +1 is
a binary label, and makes its predictions according to
2 = sign(h(x)), where h : X — R is the classification
confidence function.

During tracking, it is assumed that a change in position
of the target can be estimated by maximising h in a
local region around the position in the previous frame. Let
p:—1 be the estimated bounding box at time ¢ — 1. The
objective for the tracker is to estimate a transformation
(e.g. translation) y; € Y such that the new position of the
object is approximated by the composition p; = p;—1 0 y:.
Y denotes our search space and its form depends on
the type of motion to be tracked. For most tracking-by-
detection approaches, this is 2D translation, in which case
Y = {(Au, Av) | Au? + Av? < r?}, where 7 is a search
radius. In this case, the composition p; = p;_j0Y; is given
by (ug, ve) = (us—1,ve—1) + (Au, Av).

Mathematically, an estimate is found for the change in
position relative to the previous frame according to

Tracking by detection

y: = argmax h(xp' '), (1)
yey

and the tracker position is updated as p; = py—1 0 .
After estimating the new object position, a set of train-
ing examples from the current frame is generated. We
separate this process into two components: the sampler
and the labeller. The sampler generates a set of n dif-
ferent transformations {31/7}, ..., ¥}, resulting in a set of
training examples {x™*°* ... xP*°Y" }. After this process,
depending on the classifier type, the labeller chooses labels
{z},..., 21} for these training examples. Finally, the clas-
sifier is updated using these training examples and labels.
There are a number of issues which are raised by
this approach to tracking. Firstly, the assumption made
in (1) that the classification confidence function provides
an accurate estimate of object position is not explicitly
incorporated into the learning algorithm, since the classifier
is trained only with binary examples and has no information
about transformations. Secondly, examples used for training
the classifier are all equally weighted, meaning that a neg-
ative example which overlaps significantly with the tracker
bounding box is treated the same as one which overlaps
very little. One implication of this is that slight inaccuracy
during tracking can lead to poorly labelled examples, which
are likely to reduce the accuracy of the classifier, in

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 4

turn leading to further tracking inaccuracy. Thirdly, the
labeller is usually chosen based on intuitions and heuristics,
rather than having a tight coupling with the classifier.
Mistakes made by the labeller manifest themselves as label
noise, and many current state-of-the-art approaches try to
mitigate this problem by using robust loss functions [6],
[7], semi-supervised learning [8], [9], or multiple-instance
learning [3], [10]. We argue that all of these techniques,
though justified in increasing the robustness of the classifier
to label noise, are not addressing the real problem, which
stems from separating the labeller from the learner. The
algorithm which we present does not depend on a labeller
and tries to overcome all these problems within a coherent
framework by directly linking the learning to tracking and
avoiding an artificial binarisation step. Sample selection
is fully controlled by the learner itself, and relationships
between samples such as their relative similarity are taken
into account during learning.

To conclude this section, we describe how a conven-
tional labeller works, as this provides further insight into
our algorithm. Traditional labellers use a transformation
similarity function to determine the label of a sample
positioned at p; o y;. This function can be expressed as
sp, (¥i,y1) € R which, given a reference position p; and
two transformations y? and y7, determines how similar the
resulting samples are. For example, the overlap function
defined by

o (vi wiy_ POy N(Pioy])
$ Pt (y Yt) - i j
(peoyi) U (proyi)
measures the degree of overlap between two bounding
boxes. Another example of such a function is based on the
distance of two transformations s% (yi,y{) = —d(yi,y?).
Let y° denote the identity (or null) transformation,
iie. p = poy". Given a transformation similarity func-
tion, the labeller determines the label 2} of a sample
generated by transformation y! by applying a labelling
function zi = {(sp,(y",y})). Most commonly, this can
be expressed as

2

+1 for sp,(y°,¥}) > Ou

Usp, (v y1) =4 —1 for sp,(y"¥) <6 (3
0 for otherwise

where 6, and 60; are upper and lower thresholds, respec-
tively. A binary classifier generally ignores the unlabelled
examples [2], while those based on semi-supervised learn-
ing use them in their update phase [8], [9]. In approaches
based on multiple-instance learning [3], [10], the labeller
collects all the positive examples in a bag and assigns a
positive label to the bag instead. Most, if not all, variants
of adaptive tracking-by-detection algorithms use a labeller
which can be expressed in a similar fashion. However, it is
not clear how the labelling parameters (e.g. the thresholds
0., and 0; in the previous example) should be estimated in
an online learning framework. Additionally, such heuristic
approaches are often prone to noise and it is not clear
why such a function is in fact suitable for tracking. In the
subsequent section, we will derive our algorithm based on a

structured output approach which fundamentally addresses
these issues and can be thought of as a generalisation of
these heuristic methods.

3.2 Structured output SVM

Rather than learning a classifier, we propose learning a pre-
diction function f : X —) to directly estimate the object
transformation between frames. Our output space is thus the
space of all transformations) instead of the binary labels
+1. In our approach, a labelled example is a pair (x,y)
where y is the desired transformation of the target. We
learn f in a structured output SVM framework [12], [15],
which introduces a discriminant function g : X x Y — R
that can be used for prediction according to

Pt—1

y: = f(xP'7!) = argmax g(x}"',y). %)

yey

Note the similarity between (4) and (1): we are still per-
forming a maximisation step in order to predict the object
transformation, but the discriminant function g now in-
cludes the label y explicitly, meaning it can be incorporated
into the learning algorithm. In our framework, rather than
using the tracker position to generate binary examples for
training a classifier, we instead provide the single labelled
example (xP*,y?), which is then used to update the learner.

The discriminant function g measures the compatibility
between (x,y) pairs and gives a high score to those that
are well-matched. By restricting this to be a linear function
9(x,y) = (w,®(x,y)), where ®(x,y) is a joint kernel
map (to be defined later), it can be learned in a large-margin
framework from a set of examples {(x1,¥1),- -, (Xn,¥n)}
by minimising the convex objective function

1 n
min - o[lw(®+C) &
=)
st. Vi: >0

Vi,Vy #yi: (W,0®:(y)) > Alys,y) — &

where 0®;(y) = ®(x;,y:) — ®(x;,y). This optimisation
aims to ensure that the value of g(x;,y;) for the training
example (x;,y;) is greater than ¢g(x;,y) for y # y;, by
a margin which depends on a loss function A. This loss
function should satisfy A(y,y) = 0 iff y = y and increase
as y and y become more dissimilar. The loss function
plays an important role in our approach, as it allows us
to address the issue raised previously of all samples being
treated equally. This can be achieved by making use of
the transformation similarity function introduced in Section
3.1. For example, as suggested by Blaschko and Lampert
[12], we choose to base the loss function on bounding box
overlap according to

Aly,y) =1-5,(y,9), (6)

where sp (y,y) is the overlap function (2).

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 5

3.3 Online optimisation

To optimise (5) in an online setting, we use the approach of
Bordes et al. [16], [17]. Using standard Lagrangian duality
techniques, (5) can be converted into its equivalent dual
form

max ZAyyZa—fZa f y),0®;(¥))
< LYEYi 1L,Y#Yi
3,Y#Yj
st. Vi,Vy#yi: ol >0
Vi: Y of <C
Y#Yi
(7

Y ol (§®i(y). e(xy). ©®
LY#Yi
As in the case of classification SVMs, a benefit of this dual
representation is that because the joint kernel map ®(x,y)
only ever occurs inside scalar products, it can be defined
implicitly in terms of an appropriate joint kernel function
k(x,y,%,y) = (®P(x,y), P(X,¥)). The kernel functions
we use during tracking are discussed in Section 3.5. By
reparametrising (7) [16] according to

—a7 ify#y
By = Z oY otherwise, ©
Y#Yi

the dual can be considerably simplified to

ZAyyzﬁY—— > BYBY@

4,y,5,¥
s.t. Vz,Vy. ﬁiy <i(y,yi)C

Vi:zly:

y

mgx (%4,¥), 2(x5,¥))

(10)
where 6(y,y) = 1 if y = y and O otherwise. This also
simplifies the discriminant function to

Zﬂy (xi,¥

In this form we refer to those pairs (x;,y) for which 3 #
0 as support vectors and those x; included in at least one
support vector as support patterns. Note that for a given
support pattern x;, only the support vector (x;,y;) will
have 8" > 0, while any other support vectors (x;,y),
y # yi, will have 37 < 0. We refer to these as positive
and negative support vectors respectively.

The core step in the optimisation algorithm of Bordes et
al. [16], [17] is an SMO-style step [41] which monotoni-
cally improves (10) with respect to a pair of coefficients
BiyJ’ and Biy‘. Because of the constraint Zy g7 =0,
the coefficients must be modified by opposite amounts,
BI «— BYT + N\ B « BY7 — A leading to a one-
dimensional maximisation in A which can be solved in
closed form (Algorithm 1).

The remainder of the online learning algorithm centres
around how to choose the triplet (é,y,y_) which should

®(x,y))- (11)

Algorithm 1 SMOSTEP
Require: i,y ., y_
1 koo = (®(x4,y+), B(x; +)>
kll - <(I)(Xza)7@()>
kor = (®(x;,y+), ®(xi,y-))
AU = 9iyH)=gi(y-)
koo+k11—2ko1
A = max(0, min(A*, Cé(y+,¥:)
Update coefficients
BT BT+ A
B B =
Update gradients

—6)

R A A ol

10: for (x;,y) € S do

1 ko = (®(x5,y), (xi,y4))
12: kl < (ijy)v(I’(xHy)>
132 V(y) < V,;(y) — Ako — k1)
14: end for

be optimised by this SMO step. For a given ¢, y+ and y_
are chosen to define the feasible search direction with the
highest gradient, where the gradient of (10) with respect to
a single coefficient 3 is given by

Vily) =~ Ay, i) ZBY

Three different update steps are considered, which map very
naturally onto a tracking framework:

Xz»y (Xjay»

12)

o PROCESSNEW Processes a new example (x;,y;). Be-
cause all the () are initially O, and only 37 >
0, y+ = y;. y— is found according to y_ =
argminycy, V;(y). During tracking, this corresponds
to adding the true label y; as a positive support
vector and searching for the most important sample
to become a negative support vector according to the
current state of the learner, taking into account the
loss function. Note, however, that this step does not
necessarily add new support vectors, since the SMO
step may not need to adjust the 3} away from O.

o PROCESSOLD Processes an existing support pattern
x; chosen at random. y; = argmax,y V;(y), but
a feasible search direction requires 3 < 6(y,y;)C,
meaning this maximisation will only involve exist-
ing support vectors. As for PROCESSNEW, y_ =
argming ¢y V;(y). During tracking, this corresponds
to revisiting a frame for which we have retained some
support vectors and potentially adding another sample
as a negative support vector, as well as adjusting
the associated coefficients. Again, this new sample is
chosen to take into account the current learner state
and loss function.

o OPTIMIZE Processes an existing support pattern x;
chosen at random, but only modifies coefficients of
existing support vectors. y is chosen as for PRO-
CESSOLD, and y — = argmin,,¢y, Vi(y), where Y; =
{y ey |5 #0}.

Of these cases, PROCESSNEW and PROCESSOLD are

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 6

both able to add new support vectors, which gives the
learner the ability to perform sample selection during
tracking and discover important background elements. This
selection involves searching over) to minimise V,;(y),
which may be a relatively expensive operation. In practice,
we found that for the 2D translation case it was sufficient to
sample from) on a polar grid, rather than considering ev-
ery pixel offset. The OPTIMIZE case only considers existing
support vectors, so is a much less expensive operation.

As suggested by Bordes et al. [17], we schedule these
update steps as follows. A REPROCESS step is defined as a
single PROCESSOLD step followed by np OPTIMIZE steps.
Given a new training example (x;,y;) we call a single
PROCESSNEW step followed by np REPROCESS steps. In
practice we typically use np = nr = 10.

During tracking, we maintain a set of support vectors
S. For each (x;,y) € S we store the coefficient 37
and gradient V;(y), which are both incrementally updated
during an SMO step. If the SMO step results in a 37
becoming 0, the corresponding support vector is removed
from S.

3.4 Incorporating a budget

An issue with the approach described thus far is that
the number of support vectors is not bounded and in
general will increase over time. Evaluating ¢g(x,y) requires
evaluating scalar products (or kernel functions) between
(x,y) and each support vector, which means that both
the computational and storage costs grow linearly with the
number of support vectors. Additionally, since (12) involves
evaluating g, both the PROCESSNEW and PROCESSOLD
update steps will become more expensive as the number
of support vectors increases. This issue is particularly
important in the case of tracking, as in principle we could
be presented with an infinite number of training examples.

Recently a number of approaches have been proposed
for online learning of classification SVMs on a fixed
budget [18], [19], meaning the number of support vectors
cannot exceed a specified limit. If the budget is already
full and a new support vector needs to be added, these
approaches identify a suitable support vector to remove and
potentially adjust the coefficients of the remaining support
vectors to compensate for the removal.

We now propose an approach for incorporating a budget
into the algorithm presented in Section 3.3. Similar to Wang
et al. [19], we choose to remove the support vector which
results in the smallest change to the weight vector w, as
measured by || Aw/||2. However, as with the SMO step used
during optimisation, we must also ensure that the constraint
Zy 37 = 0 remains satisfied. Because of the fact that there
only exists one positive support vector for each support
pattern, it is sufficient to only consider the removal of
negative support vectors during budget maintenance. In the
case that a support pattern has only two support vectors,
then this will result in them both being removed. Removing
the negative support vector (x,,y) results in the weight

Algorithm 2 Struck tracking loop.
Require: f;, p;—1, St—1
1. Estimate change in object location
y+ = argmax,cy g(x;"',y)
Pt =Pt-1°0Yt
Update discriminant function
(i,y1,y_) < PROCESSNEW(x}*,y?)
SMOSTEP(i,y+,y—)
BUDGETMAINTENANCE()
for 5 =1tong do
(4,¥+,y—) < PROCESSOLD()
SMOSTEP(i,y+,y—)
BUDGETMAINTENANCE()
122 for k=1 to np do
13: (4,¥4+,y—) + OPTIMIZE()
14: SMOSTEP(4,y+,y—)
15: end for
16: end for
17: return p;, S;

R A A T ol

—_—
—_ O

vector changing according to

w=w-—®(x,y)+ B B(xr,yr), 13)
meaning
IAw]? =37 {(®(x,,y), B(x:,¥)) +
<¢(X7"ay7”)7¢(xraYT)> - (14)

2(B(x,,y), B(Xr, 7)) }-

Each time the budget is exceeded we remove the support
vector resulting in the minimum ||Aw|? We show in
the experimental section that this does not impact signifi-
cantly on tracking performance, even with modest budget
sizes, and improves the efficiency. We name the proposed
algorithm Struck and show the overall tracking loop in
Algorithm 2. Our unoptimised C++ implementation of
Struck is publicly available'.

3.5 Kernel functions and image features

The use of a structured output SVM framework provides
great flexibility in how images are actually represented. In
practice we choose to use a restriction kernel [12] which
uses the relative bounding box location y to crop a patch
from a frame xP°Y, allowing a standard image kernel to be
applied between pairs of such patches

uy(X,y, X, §) = k(xPY, xPY). (15)
The use of kernels makes it straightforward to incorporate
different image features into our approach, and in our
experiments we consider a number of examples. We also
investigate using multiple kernels in order to combine
different image features together.

1. http://www.samhare.net/research

http://www.samhare.net/research

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014

Sequence Struck o Strucki oo Strucksg Struckog MIForest | OMCLP | MIL Frag OAB
coke 0.57 0.57 0.56 0.52 0.35 0.24 0.33 | 0.08 | 0.17
david 0.80 0.80 0.81 0.35 0.72 0.61 0.57 | 0.43 | 0.26
facel 0.86 0.86 0.86 0.81 0.77 0.80 0.60 | 0.88 | 0.48
face2 0.86 0.86 0.86 0.83 0.77 0.78 0.68 | 0.44 | 0.68
girl 0.80 0.80 0.80 0.79 0.71 0.64 0.53 | 0.60 | 0.40
sylvester 0.68 0.68 0.67 0.58 0.59 0.67 0.60 | 0.62 0.52
tigerl 0.70 0.70 0.69 0.68 0.55 0.53 0.52 | 0.19 | 0.23
tiger2 0.56 0.57 0.55 0.39 0.53 0.44 0.53 | 0.15 0.28
Average FPS 12.1 13.2 16.2 21.4

TABLE 1: Average bounding box overlap on benchmark sequences. The first four columns correspond to our method with
different budget size indicated by the subscript, and the rest of the columns show published results from state-of-the-art
approaches. The best performing method is shown in bold. We also show underlined the cases when Struck with the
smallest budget size (B = 20) outperforms the state-of-the-art. The last row gives the average number of frames per
second for an unoptimised C++ implementation of our method.

coke david facel

4 EXPERIMENTS
4.1 Tracking-by-detection benchmarks

Our first set of experiments aims to compare the results of
the proposed approach with existing tracking-by-detection
approaches. The majority of these are based around boost-
ing or random forests and use simple Haar-like features as
their image representation. We use similar features for our
evaluation in order to provide a fair comparison and isolate
the effect of the learning framework, but note that these
features were specifically designed to work with the feature-
selection capability of boosting, having been originally
introduced by Viola and Jones [11]. Even so, we find that
with our framework we are able to significantly outperform
the existing state-of-the-art results.

We use 6 different types of Haar-like feature arranged
on a grid at 2 scales on a 4 x 4 grid, resulting in 192
features, with each feature normalised to give a value in

[omCLP |

OAB

tiger2

tigerl
Fig. 2: Example frames from benchmark tracking sequences, showing the results of Struck compared with MILTrack
[3], OMCLP [4] and OAB [2]. Videos of these results can be found at http://www.samhare.net/research.

sylvester

the range [—1, 1]. The reason for using a grid, as opposed
to random locations, is partly to limit the number of random
factors in the tracking algorithm, since the learner itself has
a random element, and partly to compensate for the fact that
we do not perform feature selection. Note, however, that the
number of features we use is lower than systems against
which we compare, which use at least 250. We concatenate
the feature responses into a feature vector x and apply a
Gaussian kernel k(x, %) = exp(—o||x—x]|?), with 0 = 0.2
and C' = 100 which is fixed for all sequences. Like the
systems against which we compare, we track 2D translation
Y = {(Au, Av) | Au? + Av? < r2}. During tracking we
use a search radius r = 30 pixels, though when updating the
classifier we take a larger radius » = 60 to ensure stability.
As mentioned in Section 3.3, we found empirically that
searching) exhaustively when performing online learning
was unnecessary, and it is sufficient to sample from) on a

http://www.samhare.net/research

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 8

il “' i!- \I."s
Ko

(a) girl

(b) david

(c) sylvester

Fig. 3: Visualisation of the support vector set S at the end of tracking with B = 64 (chosen for illustrative purposes).

Each patch shows xP*Y

, and positive and negative support vectors have green and red borders respectively. Notice that

the positive support vectors capture the change in appearance of the target object during tracking.

polar grid (we use 5 radial and 16 angular divisions, giving
81 locations).

To assess tracking performance, we use the Pascal VOC
overlap criterion as suggested by Saffari et al. [4] and
report the average overlap between estimated and ground
truth throughout each sequence. Because of the randomness
involved in our learning algorithm, we repeat each sequence
5 times with different random seeds and report the median
result.

Table | shows the results obtained by our tracking
framework for various budget sizes B, along with published
results from existing state-of-the-art approaches [2]-[4],
[42], [43], and example frames can be seen in Figure 2.
It can be seen from these results that Struck outperforms
the current state-of-the-art on almost every sequence, often
by a considerable margin. These results also demonstrate
that the proposed budgeting mechanism does not impact
significantly on tracking results. Even when the budget is
reduced as low as B = 20 we outperform the state-of-the-
art on 4 out of 8 sequences.

In Figure 3 we show some examples of the support vector
set S at the end of tracking. An interesting property which
can be observed is that the positive support vectors (shown
with green borders) provide a compact summary of the
change in object appearance observed during tracking. In
other words, our tracker is able to identify distinct appear-
ances of the object over time. Additionally, it is clear that
the algorithm automatically chooses more negative support
vectors than positive. This is mainly because the foreground
can be expressed more compactly than the background,
which has higher diversity. We also see from these figures
that the budgeting mechanism we use maintains support
vectors from the entire tracking sequence and does not
discard old appearance information. We believe that this
contributes to the strong performance of our tracker, as it
helps prevent drift during tracking which could occur if old
information was discarded.

4.2 Effect of structured learning

To investigate the importance of structured learning on our
results, we next perform a set of experiments against a
baseline classification SVM. To achieve this we modify
our tracking framework such that the learner is no longer
trained using structured examples, but rather using a set
of binary examples. Each frame a single positive example
is generated using the current tracker state, and negative
examples are generated by sampling from) as in Section
4.1 and taking those which have an overlap of less than 0.5
with the tracker state (i.e. 8, = 1 and §; = 0.5 using the
labelling function (3)). All other factors are kept the same,
meaning both approaches use the same image features as
in Section 4.1 and both use a budget size B = 100.

Figure 4 shows precision plots for these two tracking
approaches on each of the benchmark test sequences from
Section 4.1. These plots show the percentage of frames
for which the overlap between the ground truth bounding
box and tracker bounding box is greater then a particular
threshold, which provides a more detailed view of the
tracker performance than the average overlap used in the
previous section. As before, we run each tracker 5 times
on the sequence and compute the median precision for a
given overlap threshold to produce these plots.

We can see from these results that overall the precision
curves for the structured SVM are better than or roughly
equivalent to those for the classification SVM, which
demonstrate that the structured learning framework we use
is able to produce gains in accuracy over a traditional
classification-based approach. These gains are most notable
on the more challenging sequences such as coke, david and
tiger2, for which the classification SVM does not perform
particularly well.

In many cases, however, we see that the performance of
the two tracking approaches are quite similar. This indicates
that a large part of the performance gains observed in
Section 4.1 can be attributed to our use of a kernelised

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 9

1.0} 1.0]
08 08
§ o8 § os
2 @
|53 (5]
o 4
Qo 0.4 Q04 =
0.2 0.2
Structured Structured
- Binary 0.5 .- Binary 0.5
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Overlap Threshold Overlap Threshold
(a) coke (b) david
1.0; 1.0 s
0.8 0.8
S os 5 06l
2 k2
o o
@ 13
@ 04 o 04
0.2 0.2
= Structured Structured
- -+ Binary 0.5 '\ == inary 0.5
0.0 = 0.0) —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Overlap Threshold Overlap Threshold
(c) facel (d) face2
1.0 = 1.0
0.8+ 0.8
& o8l & 06
Q2 @
I53 o
o 4
Q 04 a 04
0.2 0.2
= Structured = Structured
------ Binary 0.5 -=----Binary 0.5
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 2 0.4 0.6 0.8 1.0
Overlap Threshold Overlap Threshold
(e) girl (f) sylvester
1.0 QL 1.0
08 o8|
Sos Sos
-2 2
Q04 o 04
0.2 0.2
= Structured ——— Structured
------ Binary 0.5 =====- Binary 0.5 ~
0.0, 0.0 =
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Overlap Threshold Overlap Threshold
(g) tigerl (h) tiger2

Fig. 4: Precision plots comparing the results of tracking
using our structured SVM framework with a baseline clas-
sification SVM. These plots show the percentage of frames
for which the overlap between the ground truth bounding
box and tracker bounding box is greater than a particular
threshold.

SVM rather than a boosting-based classifier. Nevertheless,
we can still observe that structured learning is able to bring
additional performance gains, and importantly it removes
the need for introducing a binary labelling strategy, pro-
viding a more tightly integrated approach to learning in a
tracking context.

4.3 Combining kernels

A benefit of the framework we have presented is that it is
straightforward to use different image features by modify-
ing the kernel function used for evaluating patch similarity.
In addition, different features can be combined by averaging

multiple kernels: k(x,X) = 5~ SIVE k@ (x() %), Such

Sequence A B C A+B A+C B+C A+B+C
coke 0.57 | 0.67 | 0.69 0.62 0.65 0.68 0.63
david 0.80 | 0.83 | 0.67 0.84 0.68 0.87 0.87
facel 0.86 | 0.82 | 0.86 0.82 | 0.87 | 0.82 0.83
face2 0.86 | 0.79 | 0.79 0.83 | 0.86 0.78 0.84
girl 0.80 | 0.77 | 0.68 0.79 | 0.80 0.79 0.79
sylvester 0.68 | 0.75 | 0.72 0.73 0.72 0.77 0.73
tigerl 0.70 | 0.69 | 0.77 0.69 0.74 0.74 0.72
tiger2 0.57 | 0.50 | 0.61 0.53 | 0.63 0.57 0.56
Average 0.73 | 0.73 | 0.72 0.73 0.74 0.75 0.75

TABLE 2: Combining kernels. A: Haar features with Gaus-
sian kernel (o = 0.2); B: Raw features with Gaussian kernel
(o = 0.1); C: Histogram features with intersection kernel.
The bold shows when multiple kernels improve over the
best performance of individual kernels, while the underline
shows the best performance within the individual kernels.
The last row shows the average of each column.

an approach can be considered a basic form of multiple
kernel learning (MKL), and indeed it has been shown [44]
that in terms of performance full MKL (in which the
relative weighting of the different kernels is learned from
training data) does not provide a great deal of improvement
over this simple approach.

In addition to the Haar-like features and Gaussian kernel
used in Section 4.1, we also consider the following features:

« Raw pixel features obtained by scaling a patch to 16 x
16 pixels and taking the greyscale value (in the range
[0,1]). This gives a 256-D feature vector, which is
combined with a Gaussian kernel with o = 0.1.

o Histogram features obtained by concatenating 16-bin
intensity histograms from a spatial pyramid of 4
levels. At each level L, the patch is divided into
L x L cells, resulting in a 480-D feature vector. This
is combined with an intersection kernel: k(x,X) =
% Zi’il min(x;, ;).

Table 2 shows tracking results on the same benchmark
videos, with B = 100 and all other parameters as specified
in Section 4.1. It can be seen that the behaviour of the
individual features are somewhat complementary. In many
cases, combining multiple kernels seems to improve results.
However, it is also noticeable that the performance gains
are not significant for some sequences. This could be
because of our naive kernel combination strategy and as
has been shown by other researchers, e.g. [2], feature
selection plays a major role in online tracking. Therefore,
further investigation into full MKL could potentially result
in further improvements.

5 GPU-BASED TRACKING

To investigate the speed potential of an optimised im-
plementation of Struck, we implemented a CUDA-based
version of it called ThunderStruck. As with the original
Struck, code for ThunderStruck is publicly available’. In
this section, we describe some of the details of this imple-
mentation and compare its speed and performance with the
original version.

2. https://bitbucket.org/sgolodetz/thunderstruck

https://bitbucket.org/sgolodetz/thunderstruck

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 10

-1 >2
-1

+1

Fig. 5: The different types of Haar feature used by Struck.
The numbers in the boxes are the (unnormalised) weights
used when calculating the features. Note that no feature
requires more than four boxes.

5.1 Feature Calculation

Prior to calculating features, we transfer the current frame
and any derived images that are best computed on the CPU
(e.g. an integral image, for computing Haar features) across
to the GPU as CUDA textures. To calculate raw features,
we use a variant of the approach in the original Struck that
is a better fit for the GPU architecture. Rather than scaling
a patch to 16 x 16 pixels and then densely sampling the
result, we instead sample from a 16x 16 uniform grid placed
over the unscaled patch: this allows us to avoid resizing
patches on the GPU, whilst producing equivalent results.
We compute each raw feature on a separate CUDA thread
and calculate the features for all patches in parallel.

To calculate Haar features, we observe that each Haar
feature used in the original Struck (see §4.1) can be
calculated as the weighted combination of at most four box
sums over the pixels of the current frame (see Figure 5).
The sum of each box can be calculated efficiently using the
integral image for the frame [|1]. We can thus compute all
of the Haar features without needing to branch on feature
type on the GPU by making each CUDA thread calculate
a single feature and assigning zero weights to boxes that
are unnecessary for features of particular types.

5.2 SVM Representation

A Struck-style SVM maintains two separate sets of data: the
features computed for patches associated with the support
patterns (some of the previously-seen frames), and a record
of which patches are in the current set of support vectors,
together with their corresponding [coefficients and gradi-
ent values. Since GPU code is easier to optimise when using
fixed-size arrays and we have seen that it is possible to use
a finite budget of support vectors (specifically, 100) without
degrading tracking performance, we chose to use a fixed-
size representation for our SVM data in ThunderStruck
(see Figure 6). We use a single large GPU-based array
to store all of the features for every patch within every
support pattern. We use a smaller array of indices to specify
the current support vectors: each element of this array
either refers to a patch or is —1 to indicate the absence
of a support vector. The corresponding 3 coefficients and

features patch 0 | patch 1 patchp-1 | patchp | patchp + 1

patch 2 ‘

]

svIndices ‘ 0 | 2 | -1 | | p | 1 |p+1| .. ‘
petes _
gradients ’ -04 | -04 | # | | -02 | # | -0.2 | ‘

Fig. 6: The representation of the SVM in ThunderStruck.

gradient values are stored in the similarly-sized arrays betas
and gradients, such that the S value for support vector
k is stored in betas[k] and the gradient value is stored in
gradients[k]. Since access to the three support vector arrays
is required on both the CPU and GPU, we store mirrored
copies of them in both places to minimise costly memory
transfers over the CPU-GPU bus (note that the storage cost
involved is low due to the small size of the arrays).

Addition and removal of support vectors can be imple-
mented via a simple ID allocator that maintains a set of
used IDs and a set of free ones. The IDs index into the
svIndices, betas and gradients arrays. To add a support
vector, we allocate a free ID and use the corresponding
elements in the arrays; to remove one, we deallocate the
ID, causing it to be returned to the free set, and set the
corresponding element of svlndices to —1.

5.3 SVM Evaluation

We implemented both linear and Gaussian kernels for SVM
evaluation in ThunderStruck. Linear kernels yield worse
tracking performance than Gaussian ones (in particular,
they do not cope well with changes in the pose of the
tracked object), but offer roughly three times greater speed
even on the CPU and are a natural fit to the GPU archi-
tecture. We consider the implementation of each type of
kernel separately.

Linear kernels. A kernelised SVM (as in Struck) that
uses a linear kernel can be evaluated efficiently on a set of
samples by first calculating the SVM’s weight vector and
then computing a straightforward dot product of the weight
vector with each of the samples. To achieve this, we can
rewrite the computation of our discriminant function g on
a particular sample as:

Zﬂf’ <'1’(Xi7}_’)a‘1’(x,y)>
= Z:B?Zq)(xivy)j¢(xay)j

9(x,y) =

(16)

4y

= Z ®(x,y);

= <W7 (I)(X’ Y)>

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 11

sharedBetas Threads features sharedSvIndices

+ \‘),‘I‘, ‘\\\\\y://
+ ,,,,,,,,, \ ’/

+ P
weights

Fig. 7: To compute the weight vector w for an SVM
with a linear kernel efficiently using CUDA, we use a
single thread block and compute a single element of w on
each thread. The indices and S coefficients of the support
vectors are loaded into shared memory at the start of the
computation so that they can be accessed quickly by all
threads. The computation is structured so that all reads from
global memory are coalesced (threads access consecutive
locations in global memory). The coloured boxes indicate
where the data is stored (cyan = global memory, green =
shared memory).

Sample/Block 1 Sample/Block 2

Threads

1 k 1 2 k
sampleFeatures l__L__L| J__L|
® SO

2

Threads

weights

REDUCE (+)

Y

«D,

D

Fig. 8: To evaluate an SVM with a linear kernel efficiently
using CUDA, we use a thread block for each sample and
compute a dot product between the sample’s features and
the SVM’s weight vector. Each dot product is computed
using a pointwise multiplication followed by a reduction in
shared memory. The coloured boxes indicate where the data
is stored (cyan = global memory, green = shared memory).
The coloured arrows distinguish between different thread
blocks.

sampleResults

To compute w efficiently using CUDA, we use a single
thread block containing a number of threads equal to the
size of our feature vectors (see Figure 7). Each thread then

computes one element of w, i.e. thread j computes:

wi=> BV®(x:,9); (17)
1,y

Since all of the threads are in the same thread block, we can
load the indices and 3 coefficients of the support vectors
into shared memory at the start of the computation: this
dramatically reduces the number of costly reads from global
memory that each thread would otherwise have to perform
(e.g. for 100 support vectors, each thread performs 102
global reads instead of 300). Note also that all the global
reads we do perform are coalesced (that is, the threads
access consecutive locations in global memory): this is
important because reading from consecutive locations al-
lows the reads to be grouped into a smaller number of
transactions, improving performance.

Having computed w, the SVM can be evaluated on a
set of samples by computing the dot product between w
and the features for each sample. Each thread block in
our implementation evaluates the SVM for a single sample
(see Figure 8). Individual threads multiply corresponding
elements of the SVM’s weight vector and the sample’s
feature vector and store the results in shared memory. The
result of the dot product is then computed using a reduction.

Gaussian kernels. Since computing the SVM’s weight
vector is reliant on knowing the feature mapping P, we
are unable to apply the approach we just used when using
a non-linear kernel. Instead, we must evaluate the SVM
directly in terms of its support vectors. For a Gaussian
kernel, our discriminant function takes the form

g(x,y) =>_ A7 exp(—a [x — xi|*).

(5%

(18)

To parallelise this, we retain the approach of letting each
thread block evaluate a single sample, and proceed in
multiple passes, each of which calculates the contribution
made by a single support vector to the result for the sample.
In each pass, thread j computes (x[j] — x;[j])?, i.e. the
square of the difference between the j’th elements of x
and x;. These results are summed using a reduction [45] at
the end of each pass and the sum is used to calculate the
contribution made by that pass’s support vector.

5.4 Budget Maintenance

As a result of the fixed-size SVM representation we use,
the way in which we maintain our support vector budget for
ThunderStruck has to differ slightly from that in the original
Struck. In particular, instead of removing a support vector
when the budget is exceeded, we now remove a support
vector at the point at which we need to add a new one
but have no available space in the arrays. We found this
to be an equivalent scheme that made little difference to
the results; however, it would nevertheless be possible to
implement a version of the original scheme for fixed-size
arrays by adding additional space at the ends of the arrays
and maintaining the budget after adding a support vector.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 12

5.5 Multi-Threading on the CPU

Whilst it does not represent an improvement to the speed
of the tracker itself, it is worth observing that we were
able to obtain a further improvement in the speed of the
ThunderStruck system as a whole by running the tracker
on one CPU thread whilst rendering the output on another.
This allows the tracker to process the next frame whilst
the current one is still being rendered. This improvement
could clearly also have been made to the original version
of Struck.

5.6 Comparison with Struck

We compare Struckigg, the best-performing version of
the original Struck, with an equivalent version of Thun-
derStruck (Haar features, a Gaussian kernel with o =
0.2 and a budget of 100 support vectors) that we call
ThunderStruck . To perform the experiments, we ran
ThunderStruck on the same sequences used in §4.1 and
computed the tracking performance (the average bounding
box overlap, as before) and speed (in frames per second).
The machine used to run ThunderStruck had a hyper-
threaded quad-core Intel i7-2600 CPU, running at 3.4
GHz, and an NVIDIA GTX 680 GPU. The results are
shown in Table 3, in which we also show the results
of an alternative version of ThunderStruck (raw features,
a linear kernel and a budget of 100 support vectors)
that we call ThunderStruckr,. Whilst the tracking perfor-
mance of ThunderStruckpry, is slightly lower than that of
ThunderStruck ¢, it runs significantly faster in practice
due to its use of a linear kernel.

As expected, the results illustrate that ThunderStruck ;7
has similar tracking performance to Struckigy (the dif-
ferences are due to randomness in the method and the
different budgeting strategy used by ThunderStruck) but
is significantly faster, running at an average of more than
50 frames per second. ThunderStruckr; is faster again,
running at an average of 78 frames per second. It is
worth noting that even higher average frame-rates (57.8
frames per second for ThunderStruck ¢ and 112.2 frames
per second for ThunderStruckr;) can be obtained when
rendering is suppressed (e.g. when running the tracker for
reasons other than direct output).

6 THIRD-PARTY BENCHMARKS

Since the original version of Struck was published [20],
both Pang and Ling [22] and Wu et al. [23] have published
third-party benchmarks that compare it against other state-
of-the-art trackers. In this section, we briefly summarise
some of their key findings.

6.1 Pang and Ling (2013)

Pang and Ling [22] presented a methodology for perform-
ing a fairer comparison between the tracking performance
of single-target trackers by aggregating results from other
comparison papers. Their key idea was to make use of

Sequence Struckioo | TSya TSrL
coke 0.57 0.61 0.61
david 0.80 0.78 0.62
facel 0.86 0.88 0.84
face2 0.86 0.84 0.77
girl 0.80 0.78 0.77
sylvester 0.68 0.62 0.63
tigerl 0.70 0.73 0.64
tiger2 0.57 0.47 0.64
Average Performance 0.73 0.71 0.69
Average FPS 13.2 50.9 78.0

TABLE 3: Comparing ThunderStruck (TS) with the original
Struck based on tracking performance and speed. The
subscripts indicate the support vector budget for Struck
and the feature/kernel combination for ThunderStruck (see
main text). The best-performing method is shown in bold.
ThunderStruck was run in Ubuntu on a machine with a
hyper-threaded quad-core Intel i7-2600 CPU, running at 3.4
GHz, and an NVIDIA GTX 680 GPU.

pairwise comparisons that authors performed between third-
party algorithms whilst ignoring those that involved the
authors’ own algorithms, on the basis that the former may
be less likely to reflect unconscious subjective bias. They
extracted pairwise results for 15 recent trackers (including
Struck) from 45 comparison papers in the existing litera-
ture. The trackers used included MILTrack [3], MTT [46]
and ColorPF [47].

The results were separately aggregated using various
aggregation algorithms (rank aggregation, a PageRank-like
algorithm, Elo’s rating and Glicko’s rating) to produce four
different full rankings for the trackers. Whilst the rankings
differed in the details, they were broadly consistent in their
assessment of the best and worst trackers. In particular, the
Struck tracker was consistently ranked highest amongst the
trackers they studied.

It is important to note that this study explicitly excluded
trackers that appeared in fewer than 10 pairwise results
or only a single comparison paper: this clearly had the
effect of excluding some recent trackers for which there
had not yet been sufficient time for a thorough evaluation
by the community. In spite of this, it is encouraging that
Struck performed consistently well against a significant
number of other trackers using a variety of different ranking
approaches.

6.2 Wuetal. (2013)

Wau et al. [23] performed a large-scale evaluation comparing
29 trackers (including SCM [48], TLD [49] and ASLA
[50]) on 50 fully-annotated sequences. Their key ideas
were (a) to perturb the initialisation of the trackers in
both time and space to improve the robustness of the
evaluation, and (b) to evaluate the trackers on sequences
that had been annotated to highlight tracking challenges,
e.g. fast motion, occlusion, or changes in scale or illumi-
nation. Trackers were evaluated using a variety of different
tests, in each case using location error (the percentage of
frames whose predicted bounding boxes were within a fixed
pixel threshold of the ground truth bounding boxes) as a

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?, NO. ?, ? 2014 13

precision measure, and overlap (the percentage of frames
whose predicted bounding boxes overlapped the ground
truth bounding boxes by more than a fixed threshold) as
a success measure. These measures were calculated for a
range of thresholds in each case. The trackers were ranked
in terms of precision using a fixed location error threshold
of 20 pixels, and in terms of success using the area under
the curve (AUC) approach.

There different types of test were performed to compare
the trackers’ performance: (a) one-pass evaluation (OPE),
which initialises the trackers with the ground truth bounding
box from the first frame of each sequence, (b) temporal
robustness evaluation (TRE), which initialises the trackers
at another starting frame in the sequence, and (c) spatial
robustness evaluation (SRE), which shifts or scales the
ground truth bounding box in the first frame. Overall
performance tests of all three types were performed for
each tracker on all of the available sequences; further tests
were also performed to compare the trackers’ performance
when restricted to specific types of sequence, e.g. those
with a significant amount of fast motion or occlusion.

Struck was the top-performing tracker for all of the
overall performance tests except the OPE success test,
in which it ranked a narrow second. For the TRE and
SRE overall success tests, it performed better than other
trackers for small overlap thresholds but less well for large
ones, due to not handling scale variation. For the TRE and
SRE overall precision tests, it performed significantly better
than other trackers at the 20 pixel threshold. For the SRE
fast motion tests, dense sampling trackers performed best,
with Struck being the top performer among such methods.
Similarly, Struck performed strongly on the SRE occlusion
and scale variation tests, ranking first for all the tests except
the SRE success test for scale variation, in which it ranked
a close second to the ASLA tracker. For the SRE tests that
initialised trackers at various different scales, Struck also
performed well, ranking either first or second in 6 of the 8
tests shown. This is encouraging, since the implementation
tested only sampled at a single scale.

7 CONCLUSION

In this paper, we have extended Struck, our adaptive
tracking-by-detection framework [20], to the GPU, demon-
strating that it is possible for Struck to achieve high frame-
rates without sacrificing tracking performance. Struck is
based on structured output prediction, and we have per-
formed additional experiments to quantify the effects of
structured learning in comparison with a baseline classifi-
cation SVM.

Unlike prior methods based on classification, our algo-
rithm does not rely on a heuristic intermediate step for
producing labelled binary samples with which to update
the classifier, which is often a source of error during track-
ing. Our approach uses an online structured output SVM
learning framework, making it easy to incorporate image
features and kernels. From a learning point of view, we
take advantage of the well-studied large-margin theory of

SVMs, which brings benefits in terms of generalisation and
robustness to noise (both in the input and output spaces).
To prevent unbounded growth in the number of support
vectors, and allow real-time performance, we introduced
a budget maintenance mechanism for online structured
output SVMs. We have shown experimentally that our
algorithm gives superior performance compared to state-
of-the-art trackers. We have also discussed recent third-
party benchmarks in which Struck achieved state-of-the-art
performance.

ACKNOWLEDGEMENTS

Financial support was provided by ERC grant ERC-2012-
AdG 321162-HELIOS. Stuart Golodetz is funded via a
Royal Society Brian Mercer Award for Innovation awarded
to Stephen L. Hicks. Philip H. S. Torr is in receipt of a
Royal Society Wolfson Research Merit Award and acknowl-
edges support from the Leverhulme Trust and EPSRC.

REFERENCES

[1] S. Avidan, “Support vector tracking,” IEEE TPAMI, vol. 26, no. 8§,
pp. 1064-72, 2004.

[2] H. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via
On-line Boosting,” in British Machine Vision Conference, 2006.

[3] B. Babenko, M.-H. Yang, and S. Belongie, “Robust Object Tracking
with Online Multiple Instance Learning,” IEEE TPAMI, 2011.

[4] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof, “Online
Multi-Class LPBoost,” in CVPR, 2010.

[5] O. Williams, A. Blake, and R. Cipolla, “A Sparse Probabilistic
Learning Algorithm for Real-Time Tracking,” in /CCV, 2003.

[6] C. Leistner, A. Saffari, P. M. Roth, and H. Bischof, “On Robustness
of On-line Boosting - A Competitive Study,” in ICCVW, 2009.

[7] H. Masnadi-Shirazi, V. Mahadevan, and N. Vasconcelos, “On the
design of robust classifiers for computer vision,” in CVPR, 2010.

[8] H. Grabner, C. Leistner, and H. Bischof, “Semi-Supervised On-Line
Boosting for Robust Tracking,” in ECCV, 2008.

[9] A. Saffari, C. Leistner, M. Godec, and H. Bischof, “Robust multi-

view boosting with priors,” in ECCV, 2010.

B. Zeisl, C. Leistner, A. Saffari, and H. Bischof, “Online Semi-

Supervised Multiple-Instance Boosting,” in CVPR, 2010.

P. Viola and M. J. Jones, “Robust Real-Time Face Detection,” IJCV,

vol. 57, no. 2, pp. 137-154, 2004.

M. B. Blaschko and C. H. Lampert, “Learning to Localize Objects

with Structured Output Regression,” in ECCV, 2008.

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple

kernels for object detection,” in /ICCV, 2009.

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,

“Object Detection with Discriminatively Trained Part-Based Mod-

els,” IEEE TPAMI, vol. 32, no. 9, pp. 1627-1645, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large

Margin Methods for Structured and Interdependent Output Vari-

ables,” JMLR, vol. 6, pp. 1453-1484, 2005.

A. Bordes, L. Bottou, P. Gallinari, and J. Weston, “Solving multiclass

support vector machines with LaRank,” in /CML, 2007.

A. Bordes, N. Usunier, and L. Bottou, “Sequence Labelling SVMs

Trained in One Pass,” in Proc. ECML-PKDD, 2008.

K. Crammer, J. Kandola, R. Holloway, and Y. Singer, “Online

Classification on a Budget,” in NIPS, 2003.

[19] Z. Wang, K. Crammer, and S. Vucetic, “Multi-Class Pegasos on a

Budget,” in /ICML, 2010.

S. Hare, A. Saffari, and P. H. S. Torr, “Struck: Structured Output

Tracking with Kernels,” in /CCV, 2011.

A. Yilmaz, O. Javed, and M. Shah, “Object Tracking: A Survey,”

ACM Computing Surveys, vol. 38, no. 4, December 2006.

Y. Pang and H. Ling, “Finding the Best from the Second Bests —

Inhibiting Subjective Bias in Evaluation of Visual Tracking Algo-

rithms,” in CVPR, 2013.

Y. Wu, J. Lim, and M.-H. Yang, “Online Object Tracking: A

Benchmark,” in CVPR, 2013, pp. 2411-2418.

[10]
[11]
[12]

[13

—_

[14]

[15]

[16]
(171

(18]

[20]
[21]

[22]

(23]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. ?

[24]

[25]
[26]

[27]

[28]
[29]

(30]

(31]
[32]
[33]
[34]
[35]

[36]

[37]

[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]

[49]

[50]

X. Mei, H. Ling, Y. Wu, E. Blasch, and L. Bai, “Minimum Error
Bounded Efficient ¢1 Tracker with Occlusion Detection,” in CVPR,
2011, pp. 1257-1264.

N. Wang, J. Wang, and D.-Y. Yeung, “Online Robust Non-negative
Dictionary Learning for Visual Tracking,” in ICCV, 2013.

J. Xing, J. Gao, B. Li, W. Hu, and S. Yan, “Robust Object Tracking
with Online Multi-lifespan Dictionary Learning,” in /ICCV, 2013.
M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tuto-
rial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking,” IEEE TSP, vol. 50, no. 2, pp. 174-188, February 2002.
S. Cao and W. Xue, “Robust Visual Tracking via Adaptive Forest,”
in ICICIP, June 2013, pp. 30-34.

A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof, “On-
line Random Forests,” in Proc. ICCV-OLCV, 2009.

J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST:
Parallel Robust Online Simple Tracking,” in CVPR, 2010, pp. 723—
730.

Q. Bai, Z. Wu, S. Sclaroff, M. Betke, and C. Monnier, “Randomized
Ensemble Tracking,” in ICCV, 2013, pp. 2040-2047.

N. Wang and D.-Y. Yeung, “Ensemble-Based Tracking: Aggregating
Crowdsourced Structured Time Series Data,” in ICML, 2014.

S. Duffner and C. Garcia, “PixelTrack: a fast adaptive algorithm for
tracking non-rigid objects,” in ICCV, 2013, pp. 2480-2487.

X. Ren and J. Malik, “Tracking as Repeated Figure/Ground Seg-
mentation,” in CVPR, 2007.

S. Wang, H. Lu, F. Yang, and M.-H. Yang, “Superpixel Tracking,”
in ICCV, 2011, pp. 1323-1330.

J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting
the Circulant Structure of Tracking-by-detection with Kernels,” in
ECCV. Springer Berlin Heidelberg, 2012, pp. 702-715.

M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Weijer, “Adap-
tive Color Attributes for Real-Time Visual Tracking,” in CVPR,
2014.

F. Pernici and A. D. Bimbo, “Object Tracking by Oversampling
Local Features,” IEEE TPAMI, vol. PP, no. 99, 2013.

Y. Lu, T. Wu, and S.-C. Zhu, “Online Object Tracking, Learning
and Parsing with And-Or Graphs,” in CVPR, 2014.

L. Zhang and L. van der Maaten, “Preserving Structure in Model-
Free Tracking,” IEEE TPAMI, vol. 36, no. 4, pp. 756-769, 2014.

J. C. Platt, Fast Training of Support Vector Machines Using Sequen-
tial Minimal Optimization. MIT Press, 1999, pp. 185-208.

A. Adam, E. Rivlin, and I. Shimshoni, “Robust Fragments-Based
Tracking using the Integral Histogram,” in CVPR, 2006.

C. Leistner, A. Saffari, and H. Bischof, “MIForests: Multiple-
Instance Learning with Randomized Trees,” in ECCV, 2010.

P. Gehler and S. Nowozin, “On Feature Combination for Multiclass
Object Classification,” in ICCV, 2009.

M. Harris, “Optimizing Parallel Reduction in CUDA,” NVIDIA
Developer Technology, vol. 2, p. 45, 2007.

T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Robust Visual Tracking
via Structured Multi-Task Sparse Learning,” IJCV, vol. 101, 2013.
P. Pérez, C. Hue, J. Vermaak, and M. Gangnet, “Color-Based
Probabilistic Tracking,” in ECCV, 2002, pp. 661-675.

W. Zhong, H. Lu, and M.-H. Yang, “Robust Object Tracking via
Sparsity-based Collaborative Model,” in CVPR, 2012.

Z. Kalal, J. Matas, and K. Mikolajczyk, “P-N Learning: Bootstrap-
ping Binary Classifiers by Structural Constraints,” in CVPR, 2010.
X. Jia, H. Lu, and M.-H. Yang, “Visual Tracking via Adaptive
Structural Local Sparse Appearance Model,” in CVPR, 2012.

Sam Hare received his PhD from Oxford
Brookes University in 2012 as a member of
the Brookes Vision Group. His PhD research
focused on online structured learning for
real-time computer vision applications, and
was carried out in collaboration with Sony
Computer Entertainment Europe. He is now
co-founder and CTO of Obvious Engineering,
developing 3D scene reconstruction technol-
ogy for mobile devices.

Amir Saffari obtained his PhD on Online
and Semi-supervised Learning from Graz
University of Technology in 2010, and in the
same year joined Sony Computer Entertain-
ment Europe’s London Studio to work on
computer vision-based technology for video
games — notably Wonderbook, an interactive
augmented reality book for PS3. In 2013, he
moved to Affectv as the Director of Research
and leads the data science team working on
big data machine learning algorithms.

Stuart Golodetz obtained his PhD in Com-
puter Science at the University of Oxford in
2011, working on 3D image segmentation
and feature identification. After working in
industry for both SunGard and Semmle, he
is currently a research associate at the Uni-
versity of Oxford. His areas of interest include
image processing and computer games. He
was a session chair for ISPA 2009.

Vibhav Vineet is a research fellow at the
University of Oxford and closely collaborates
with the I3D group at the Microsoft Research
Cambridge. His research interests are in
computer vision and machine learning.

Ming-Ming Cheng received his PhD degree
from Tsinghua University in 2012. He is cur-
rently a research fellow at the University of
Oxford. His research interests include com-
puter graphics, computer vision, and image
processing. He has received the Google PhD
fellowship award and the IBM PhD fellowship
award. He reviews papers regularly for IEEE
TPAMI, ACM SIGGRAPH, etc.

Stephen L. Hicks received his PhD from
the University of Sydney and is a Research
Fellow in neuroscience and visual prosthet-
ics at the University of Oxford. He leads a
program of research to develop and validate
non-invasive sight enhancement techniques
based on computer vision for legally blind
individuals. He won the 2013 Royal Society
Brian Mercer Award for Innovation and the
2014 SET for Britain prize for Engineering.
Stephen is funded by the NIHR i4i program.

Philip H. S. Torr received the PhD degree
from Oxford University. After working for an-
other three years at Oxford, he worked for
six years as a research scientist for Microsoft
Research, first in Redmond, then in Cam-
bridge, founding the vision side of the Ma-
chine Learning and Perception Group. He is
now a professor at Oxford University. He has
won awards from several top vision confer-
ences, including ICCV, CVPR, ECCV, NIPS
and BMVC. He is a senior member of the

IEEE, Royal Society Wolfson Research Merit Award holder, and
program co-chair of ICCV 2013.

