Noise/Loss Modeling Principle

Deyu Meng

Xi'an Jiaotong University dymeng@mail.xjtu.edu.cn http://gr.xjtu.edu.cn/web/dymeng

Signal Recovery

A General Machine learning Framework

min f∈Ω $\mathcal{L}(f(\mathbf{W}), \mathbf{X}) + \mathbf{R}(\mathbf{W})$

A General Machine learning Framework

What we assume noise as: But the real noise is: Robust Problem $\min_{f \in \Omega} \mathcal{L}(f(\mathbf{W}), \mathbf{X}) + R(\mathbf{W})$

Noise Modeling Principle

- Assume the noise distribution follows a parametric model p(e,θ)
- Learn θ from data

We have only observations, while not noises

Noise Modeling Principle

- Assume the noise distribution follows a parametric model p(e,θ)
- Learn θ from data

Step 1: Given an initial model parameter(s) W and parametric noise distribution e~p(e, θ);
Step 2: Estimate the loss function/noise distribution θ* = arg max_θ ∑_i log p(e_i |θ);
Step 3: Optimize the model parameter W under fixed loss function L_{θ*}.

Loss Modeling Principle

- Assume the loss function L_{θ} containing certain parameters θ
- Learn L_{θ} from data

DY Meng, D Fernando, ICCV 2013; Q, Zhao, DY Meng, et al., ICML, 2014

MoG Noise Modeling

 π_k^*

Step 1: Given an initial model parameter(s) W and noise distribution $e \sim \sum_k \pi_k N(e; 0, \sigma_k^2)$ Step 2: Estimate the loss function/noise distribution $\{\boldsymbol{\pi}^*, \boldsymbol{\sigma}^*\} = \arg \max_{\boldsymbol{\pi}, \boldsymbol{\sigma}} \sum_{i} \log \sum_{n} \pi_k N(e_i; 0, \sigma_k^2);$

$$\pi_{k}^{*} = \frac{1}{N} \sum_{i} \gamma_{i,k}, \sigma_{k}^{*} = \left(\frac{\sum_{i} \gamma_{i,k} e_{i}^{2}}{\sum_{i} \gamma_{i,k}}\right)^{1/2}, \gamma_{i,k} = \frac{\pi_{k} N(e_{i}; 0, \sigma_{k}^{2})}{\sum_{k} \pi_{k} N(e_{i}; 0, \sigma_{k}^{2})}$$

Step 3: Optimize the model parameter W under fixed loss function

$$W^* = \arg\min_{W} \left\| H(\boldsymbol{\pi}^*, \boldsymbol{\sigma}^*) \odot (D - f(W)) \right\|_{2^*}$$

Low-rank Data Structure

Application: Background Subtraction

Original video

Background video

Foreground objects

Shadows of objects

Camera noise

DY Meng, D Fernando, ICCV 2013; Q, Zhao, DY Meng, et al., ICML, 2014

XY Cao, Q Zhao, DY Meng, et al., ICCV 2015

- Heuristic strategies (Meng et.al. ICCV 2013, Zhao et.al. ICML 2014)
- Information criteria: AIC (Akaike ISIT 1973), BIC(Schwarz et.al. AOS 1978) and etc.
- Bayesian methods: variational inference (Bishop et.al. PRML 2006), Dirichlet prior based method (Ormoneit et.al. TNN 1998, Zivkovic et.al. TPAMI 2004).
- Penalty methods: penalized likelihood (Huang et.al. arxiv 2013).

Mixture of Exponential Power Distribution

- The candidates p_k can be set the same or different
- Representation capacity of MoEP significantly expand that of MoG!
- All previous models can be considered as special cases of this MoEP framework:
 - L2 norm loss model: EP₂
 - L1 norm loss model: EP₁
 - L2+L1 norm loss model: $EP_2 + EP_1$
 - L_{∞} norm loss model: EP_{∞}
 - MoG: $EP_2 + EP_2 + \cdots$
 - Mixture of Laplacian: $EP_1 + EP_1 + \cdots$

Hyperspectral Image Denoising

Sometimes noise has intrinsic structures!

Extend pixel-wise MoG to Patch-wise MoG

Previous methods encode rain streaks by their:

- Photometric appearance (K. Garg and S. K. Nayar, ICCV 2005)
- Chromatic consistency (P. Liu, J. Xu, J. Liu, X. Tang, CIS 2009)
- Spatiotemporal configurations (A. Tripathi, S. Mukhopadhyay, LIP 2012)
- Local structure correlations (Y.-L. Chen and C.-T. Hsu, ICCV 2013)
- Discriminative structures (J. H. Kim, J. Y. Sim, and C. S. Kim, TIP 2015)

We might better encode rain streaks as stochastic!

- Background: Low-rank
- Moving objects: Spatial smoothness
- Rain steaks: Patch-based MoG

$$\begin{split} \min_{\boldsymbol{\Theta}} &- \sum_{n=1}^{n_p} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(f(\mathcal{H}^{\perp} \circ \mathcal{R})_n | 0, \Sigma_k) \\ &+ \alpha ||\mathcal{H}||_{3DTV} + \beta ||\mathcal{H}||_1 \\ \text{s.t. } \mathcal{H}^{\perp} \circ \mathcal{R} &= \mathcal{H}^{\perp} \circ (\mathcal{D} - \mathcal{B}) \quad \mathbf{B} = \mathbf{U} \mathbf{V}_{\perp}^T \end{split}$$

Kim(15'TIP)

Ours

Kim(15'TIP)

Ground truth

Fu(16'arXiv)

Ours

Dataset	Dataset 1				Dataset 2				Dataset 3				Dataset 4			
Metrics	VIF	SSIM	FSIM	UQI												
Input	0.846	0.981	0.991	0.934	0.731	0.950	0.975	0.927	0.591	0.877	0.935	0.816	0.717	0.917	0.970	0.763
Fu [10]	0.696	0.956	0.968	0.847	0.673	0.948	0.971	0.923	0.530	0.887	0.933	0.812	0.670	0.935	0.967	0.808
Garg [14]	0.862	0.984	0.990	0.949	0.745	0.961	0.979	0.944	0.712	0.935	0.969	0.887	0.707	0.920	0.972	0.772
Kim [17]	0.810	0.981	0.987	0.941	0.642	0.949	0.968	0.933	0.666	0.943	0.967	0.907	0.589	0.912	0.960	0.758
Ours	0.904	0.993	0.993	0.969	0.786	0.977	0.985	0.968	0.757	0.960	0.980	0.952	0.768	0.949	0.981	0.891

W Wei, LX Yi, DY Meng, et al., ICCV 2017

Next Generation of ML: From Laboratory to the Wild

http://cs.nju.edu.cn/zhouzh/

XY Cao, Q Zhao, DY Meng, et al., TIP 2016

XY Cao, Q Zhao, DY Meng, et al., TIP 2016

Y Chen, XY Cao, Q Zhao, et al., TC 2017

HW Yong, DY Meng, et al., TPAMI, 2017

Mathada	data										
wiethous	air.	boo.	sho.	lob.	esc.	cur.	cam.	wat.	fou.	Average	
RPCA [16]	71.11	67.67	72.79	78.12	64.09	81.65	44.56	65.56	72.39	68.66	
GODEC [19]	62.69	58.39	70.71	73.29	57.42	59.84	43.71	48.79	66.01	60.09	
RegL1 [29]	65.63	62.46	71.97	75.27	60.95	62.69	44.42	57.86	73.17	63.82	
PRMF [17]	65.87	62.29	71.99	75.32	60.20	65.17	44.04	61.95	72.98	64.42	
OPRMF [17]	66.17	61.82	71.95	73.99	60.12	70.86	42.89	61.89	71.80	64.61	
GRASTA [21]	61.87	58.07	71.47	60.98	57.26	68.20	44.53	75.88	69.23	63.05	
incPCP [38]	59.84	62.47	71.28	75.83	45.59	61.10	44.55	74.94	70.49	62.90	
PracReProCS [37]	70.01	63.71	71.61	61.89	56.08	77.74	42.28	87.53	62.76	65.96	
OMoGMF	74.08	59.87	71.80	78.01	61.42	86.08	44.48	87.34	71.78	70.54	
DECOLOR [18]	63.98	59.97	65.37	68.93	75.93	89.56	77.14	64.03	86.76	72.41	
GOSUS [22]	65.80	61.95	72.12	80.97	86.27	68.26	51.30	84.37	73.15	71.35	
OMoGMF+TV	77.20	61.17	72.43	83.47	66.37	92.54	65.88	93.14	82.53	77.19	

Better foreground object detection

Video	esc.	air.	sho.
Frame Size	130×160	144×176	256×320
OPRMF [17]	0.5	0.4	0.1
PracReProCS [37]	1.5	1.2	0.2
GOSUS [22]	3.8	2.7	0.6
OMoGMF+TV	18.5	14.8	3.5
OMoGMF	99.6	63.0	5.2
GRASTA [21]	166.9	123.9	28.7
incPCP [38]	274.5	220.8	85.2
GRASTA&1%SS	303.2	246.7	65.5
OMoGMF&1%SS	332.0	263.6	104.7

Faster computational speed

RASL t-GRASTA t-OMOGMF gned fran Residuals

Better background scene subtraction

Please see more demos in http://gr.xjtu.edu.cn/web/dymeng/7.

HW Yong, DY Meng, et al., TPAMI 2017

Q Xie, D Zeng, Q Zhao et al., TMI, 2017

$$\begin{split} p(I,Y,b|P) &= \frac{p(P,I|Y)p(Y,b)}{p(P)} \\ &\propto & \frac{1}{b^M} \exp\left(-\frac{\|P-I\|_2^2}{2\sigma^2} - \frac{\|f(Y)\|_1}{b}\right) \prod_{i=1}^N \left(\frac{\left(I_{0\,i}e^{-Y_i}\right)^{I_i}}{I_i!} \exp\left(-I_{0\,i}e^{-Y_i}\right)\right) \end{split}$$

$$\max_{I,Y,Q,b} \sum_{i=1}^{N} \left(\frac{(P_i - I_i)^2}{2\sigma^2} + I_i \ln(I_{0i}) - I_i Y_i - \ln(I_i!) - I_{0i} e^{-Y_i} \right) - \frac{1}{b} \|\ln(Z + \epsilon) - \ln(\epsilon)\|_1 - M \ln(b) \text{s.t. } D_2 Y = Z$$

l

Ma Jianhua

Q Xie, D Zeng, Q Zhao et al., TMI, 2017

