Discriminative Learning in Image Restoration

Wangmeng Zuo

Vision Perception and Cognition Group Harbin Institute of Technology

Content

- Image Restoration
- Can we learn more from a set of degraded/clean image pairs?
- Can we directly learn a plain CNN for image denoising?
- Can we extend denoising CNN for general image restoration?
- Can we learn more for MAP-based restoration: efficiency and flexibility?

Image Restoration

Uniform Blur

Modeling Image Degradation

- Uniform blur + Noise
 - Space invariant PSF -> convolution $\mathbf{y} = \mathbf{x} \otimes \mathbf{k} + e$
- Nonuniform blur + Noise
 - Image defocus
 - Camera shake

$$\mathbf{y} = \mathbf{A}\mathbf{x} + e$$

Reflection/background separation

Image Priors

- Gradient-based model
- Dictionary-based model
 - Analysis vs. Synthesis
 - Filter vs. Patch
- Non-local similarity-based models
 - Low rank, group sparsity

MAP Estimation

- Bayes: $P(x|y) \propto P(y|x)P(x)$
- MAP Model

$$\mathbf{x} = \arg\min_{\mathbf{x}} -\log P(\mathbf{y} | \mathbf{x}) - \log P(\mathbf{x}) \qquad \qquad \mathbf{x} = \arg\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) + R(\mathbf{x})$$

- Fidelity term based on degradation model: *L*(*x*,*y*)
- Regularization term based on prior: R(x)
- MAP-based restoration: Optimal MSE
 - Degradation model: generally is known in advance
 - Regularizer: Key issue
 - Optimization methods

Content

- Image Restoration
- Can we learn more from a set of degraded/clean image pairs?
 - Discriminative blind deconvolution
- Can we directly learn a plain CNN for image denoising?
- Can we extend denoising CNN for general image restoration?
- Can we learn more for MAP-based restoration: efficiency and flexibility?

Benefit of Task driven discriminative learning

- MAP: Optimal MSE $\mathbf{x} = \arg\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) + R(\mathbf{x})$
- Given a set of clear images, what can we do:
 - Modeling image prior
 - Non-convex
- Given a training set, what can we do:
 - Better optimization
 - \Rightarrow Joint learning of both model and optimization method

$$\min_{\Theta} \|x_i^* - x_i(\Theta)\|^2$$

s.t. $x_i(\Theta) = \arg \min_x \|x_i - y_i\|^2 + R(x_i; \Theta)$

Discriminative non-blind deconvolution (Schmidt et al., 2013)

• The parameters of priors may vary for different tasks, data distributions, and even iterations

 $\min_{\{\Theta_k\}} \| \mathbf{x}_i^* - \mathbf{x}_i^K(\{\Theta_k\}) \|^2$

s.t.
$$x_i^k(\Theta_k) = F(x_i^k, y; \Theta_k(y, \{x_i^1, \dots, x_i^{k-1}\}))$$

- Parameter learning: Random Tree Field (RTF)
 - But remains inefficient

Cascade of shrinkage fields (Schmidt & Roth, CVPR 2014)

- Rather than simply learning image priors, unfold the inference process as an iterative algorithm, where stage-wise model parameters are learned from training data
- Model: $E(\mathbf{x}|\mathbf{y}) = \frac{\lambda}{2} \|\mathbf{y} - \mathbf{K}\mathbf{x}\|^2 + \sum_{i=1}^N \sum_{c \in \mathcal{C}} \rho_i(\mathbf{f}_i^\mathsf{T}\mathbf{x}_{(c)})$
- Half-Quadratic Optimization

$$E_{\beta}(\mathbf{x}, \mathbf{z} | \mathbf{y}) = \frac{\lambda}{2} \| \mathbf{y} - \mathbf{K} \mathbf{x} \|^{2} + \sum_{i=1}^{N} \sum_{c \in \mathcal{C}} \left(\frac{\beta}{2} \left(\mathbf{f}_{i}^{\mathsf{T}} \mathbf{x}_{(c)} - z_{ic} \right)^{2} + \rho_{i}(z_{ic}) \right)$$

Trainable Nonlinear Reaction Diffusion

• A nonlinear reaction and diffusion model for image restoration

(Chen et al., CVPR 2015)

Learning Iteration-wise GST for blind deconvolution

- Blind deconvolution: both blur kernel and latent clear image are unknown.
 - More challenging and ill-posed than non-blind deconvolution.
- Our blind deconvolution model:

(Zuo et al., CVPR 2015 & TIP 2016)

Illustration of the framework (Zuo et al., CVPR 2015, TIP 2016)

• Training:

- Unfold the inference process
- Empirical evidence
- Iteration-wise loss
- Test:
 - Iteration-wise GST

Deblurring Stage

Discriminative Learning Model

• Bi-level optimization model:

$$L^{(t)}(\mathbf{\theta}) = \sum_{i=1}^{N} \frac{\alpha^{(t)}}{2} \left\| \mathbf{d}_{i}^{(t)} - \mathbf{d}_{i}^{gt} \right\|^{2} / \left| \mathbf{d}_{i}^{gt} \right| + \frac{1}{2} \left\| \mathbf{k}_{i}^{(t)} - \mathbf{k}_{i}^{gt} \right\|^{2} / \left| \mathbf{k}_{i}^{gt} \right|$$

s.t.

$$(\mathbf{d}_{i}^{(t)}, \mathbf{k}_{i}^{(t)}) = \arg\min_{\mathbf{d}, \mathbf{k}} \frac{\lambda^{(t)}}{2\sigma_{n}^{2}} \|\mathbf{k} \otimes \mathbf{d} - \nabla \mathbf{y}\|^{2} + \|\mathbf{d}\|_{p^{(t)}}^{p^{(t)}} + \mu \|\mathbf{k}\|_{0.5}^{0.5}$$
$$\nabla_{h} \mathbf{d}_{v} = \nabla_{v} \mathbf{d}_{h}, \sum_{i} k_{i} = 1, k_{i} \ge 0, \forall i$$

Unfolding the iterative solution to lower optimization problem

• Fixing k, update d with one-step hybrid ALM

$$\min_{\mathbf{d}} \frac{\lambda^{(t)}}{2\sigma_n^2} \left\| \mathbf{k}^{(t-1)} \otimes \mathbf{d} - \nabla \mathbf{y} \right\|^2 + \left\| \mathbf{d} \right\|_{p^{(t)}}^{p^{(t)}} \text{ s.t. } \nabla_h \mathbf{d}_v = \nabla_v \mathbf{d}_h$$

- One-step generalized shrinkage / thresholding (GST) operator (Zuo et al., 2013)
- Fixing **d**, update **k** with one-step ALM

$$\min_{\mathbf{k}} \frac{\lambda^{(t)}}{2\sigma_n^2} \left\| \mathbf{k} \otimes \mathbf{d}^{(t)} - \nabla \mathbf{y} \right\|^2 + \mu \left\| \mathbf{k} \right\|_{0.5}^{0.5} \\
\text{s.t.} \sum_i k_i = 1, k_i \ge 0, \forall i$$

Discriminative learning

• Partial derivative

$$\frac{\partial L_{i}^{(t)}}{\partial \boldsymbol{\theta}} = \left(\alpha^{(t)} \frac{\partial L_{\mathbf{d}_{i}}^{(t)}}{\partial p}, \alpha^{(t)} \frac{\partial L_{\mathbf{d}_{i}}^{(t)}}{\partial \lambda} + \frac{\partial L_{\mathbf{k}_{i}}^{(t)}}{\partial \lambda} \right)$$

- Optimization:
 - Gradient-based L-BFGS
 - Stage-wise learning

Incorporating Empirical Evidence and Extension

- Reduce the learned parameters to only λ and $\textbf{\textit{p}}$
- Estimate k using a smaller p and estimate x using a relatively higher p (Xu et al., 2012)
 - Extend the GST operator to p < 0

$$\hat{x} = \begin{cases} 0, & \text{if } |y| \le \tau_p^{GST} (\lambda) \\ \text{sgn}(y) S_p^{GST}(|y|; \lambda), & \text{if } |y| > \tau_p^{GST} (\lambda) \end{cases}$$

• Non-decreasing constraints on λ and $\textbf{\textit{p}}$

 $\lambda^{(s,t+1)} \geq \lambda^{(s,t)} \quad p^{(s,t+1)} \geq p^{(s,t)}$

• Multi-scale scheme (Krisnan et al., 2012)

Results: the learned iteration-wise parameters

Results (Training on Levin and test on Sun)

						PSNR	SSIM	Error Ratio	Time
	PSNR	SSIM	Error Ratio	Time	Known k	32.31	0.9385	1.0000	—
Known k	32.35	0.9536	1.0000		Krishnan et al. [15]	28.26	0.8547	2.3746	8.9400
Krishnan et al. [15]	22.76	0.8136	6.8351	159.29	Cho & Lee [12]	28.83	0.8801	1.5402	1.3951
Cho & Lee [12]	26.13	0.8624	5.0731	10.518	Levin et al. [2]	28.79	0.8922	1.5592	78.263
Levin et al. [2]	24.64	0.8606	4.5798	518.59	Xu & Jia [16]	29.45	0.9000	1.4071	1.1840
Xu & Jia [16]	28.11	0.9016	3.2843	6.2940	Sun et al. [21]	30.85	0.9191	1.2244	191.03
Sun et al. [21]	29.32	0.9200	2.4036	3911.1	Ours(-1)	28.63	0.8899	1.6235	10.403
Ours(-1)	28.03	0.9032	3.2083	99.193	Ours(0.2)	29.08	0.9057	1.4181	10.830
Ours(0.2)	28.58	0.9152	2.9802	98.231	Ours(Logistic)	30.89	0 9214	1 2228	10 549
Ours	29.35	0.9231	2.3901	98.071	Ours(Re-train)	30.80	0.9188	1.2220	10.981
						20.01	0.0100	1.2237	10.009
					Ours	30.91	0.9238	1.2210	10.998

Results

Ground truth

Cho & Lee [12] Krishnan et al. [15] Levin et al. [2]

Xu & Jia [16]

Sun et al. [21] Ours

Blurry input

Xu & Jia [16]

Sun et al. [21]

Ours

Learning Dynamic Guidance for Depth Image Enhancement (CVPR 2017)

Results

Results

		NYU	
	×4	$\times 8$	×16
MRF [4]	4.29	7.54	12.32
GF [13]	4.04	7.34	12.23
JBU [16]	2.31	4.12	6.98
TGV [<mark>6</mark>]	3.83	6.46	13.49
Park [28]	3.00	5.05	9.73
SDF [11]	3.04	5.67	9.97
DJF [22]	1.97	3.39	5.63
Ours	1.56	2.99	5.24

	Lu et al. [24]	Shen et al. [34]	Ours
Art	6.77	5.65	4.96
Books	2.24	2.24	1.66
Moebius	2.18	2.27	1.76

Denoising and inpainting

Upsampling on NYU

Content

- Image Restoration
- Can we learn more from a set of degraded/clean image pairs?
- Can we directly learn a plain CNN for image denoising?
- Can we extend denoising CNN for general image restoration?
- Can we learn more for MAP-based restoration: efficiency and flexibility?

CNN-based image denoising

- Understanding and extension of the existing image model
- Benefit from the existing deep CNN model and architecture
 - VGGnet, ResNet, GoogLeNet
- Better learning/regularization strategies
 - ReLU
 - Batch Normalization
- Efficiency in training and testing

Connect TNRD with ResNet

Revisit the basic model of TNRD

$$\min_{\mathbf{x}} D(\mathbf{y} - \mathbf{x}) + \lambda \sum_{k=1}^{K} \sum_{p=1}^{P} \phi_k \left(\left(\mathbf{f}_k * \mathbf{x} \right)_p \right)$$

For the first stage with **x** initialized as **y** (**z** = **y** - **x**)

$$\mathbf{x}_{1} = \mathbf{y} - \alpha \sum_{k=1}^{K} \overline{\mathbf{f}}_{k} * \boldsymbol{\rho}_{k} (\mathbf{f}_{k} * \mathbf{x}) - \alpha \frac{\partial D(\mathbf{z})}{\partial \mathbf{z}} \bigg|_{\mathbf{z}=0}$$

 $\frac{\partial D(\mathbf{z})}{\partial \mathbf{z}}\Big|_{\mathbf{z}=0} = 0 \text{ indicates that TNRD stage is a residual learning}$ $\mathbf{v}_1 = \mathbf{x}_1 - \mathbf{y} = \alpha \sum_{k=1}^K \overline{\mathbf{f}}_k * \phi_k \left(\mathbf{f}_k * \mathbf{y}\right)$

DnCNN: Extension of TNRD (Zhang et al., TIP 2017)

- Replacing the influence function with ReLU
- Increasing the CNN depth
- Incorporating with batch normalization

Why we use BN

• Layer 6, Monarch

Deep CNN for Denoising: DnCNN

Even for non-Gaussian noise, if $\frac{\partial D(\mathbf{n})}{\partial \mathbf{n}}|_{\mathbf{n}=\mathbf{n}_0} = 0$ holds, DnCNN also works well. **Residual Image** Noisy Image + ReLU + ReLU Conv + BN + ReLU Conv + ReLU Conv BN Conv + BN + Conv CONV+BN+RELU CONV+RELU CONV Batch Normalization : 3 ÷ Batch Øf. $\otimes f^{(T)}$ Input Normalization Output : ÷ : 3 Batch (f_N) Normalization

DnCNN for denoising

Results on BSD68 dataset

Methods	BM3D	WNNM	EPLL	MLP	CSF	TNRD	DnCNN-S	DnCNN-B
$\sigma = 15$	31.07	31.37	31.21	12	31.24	31.42	31.73	31.61
$\sigma = 25$	28.57	28.83	28.68	28.96	28.74	28.92	29.23	29.16
$\sigma = 50$	25.62	25.87	25.67	26.03	8	25.97	26.23	26.23

(e) MLP / 26.54dB

(f) TNRD / 26.59dB

(g) DnCNN-S / 26.90dB

(h) DnCNN-B / 26.92dB

DnCNN for SISR

Averaged PSNR/SSIM comparison

	Si	ngle Image Super	-Resolution	
Deterat	Upscaling	TNRD	VDSR	DnCNN-3
Dataset	Factor	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM
ē	2	36.86 / 0.9556	37.56 / 0.9591	37.58 / 0.9590
Set5	3	33.18 / 0.9152	33.67 / 0.9220	33.75 / 0.9222
	4	30.85 / 0.8732	31.35 / 0.8845	31.40 / 0.8845
	2	32.51 / 0.9069	33.02 / 0.9128	33.03 / 0.9128
Set14	3	29.43 / 0.8232	29.77 / 0.8318	29.81 / 0.8321
	4	27.66/07563	27 99 / 0 7659	28.04 / 0.7672
(a) Ground-truth	(b) T	NRD / 32 00dB	(c) VDSR / 32.58dB	(d) DnCNN-3 / 32.73dB

DnCNN for JPEG deblocking

Averaged PSNR/SSIM comparison

JPEG Image Deblocking										
Dataset	Quality	AR-CNN	TNRD	DnCNN-3						
	Factor	PSNR / SSIM	PSNR / SSIM	PSNR / SSIM						
	10	29.03 / 0.7929	29.28 / 0.7992	29.40 / 0.8026						
Classia	20	31.15 / 0.8517	31.47 / 0.8576	31.63 / 0.8610						
Classico	30	32.51 / 0.8806	32.78 / 0.8837	32.91 / 0.8861						
	40	33.34 / 0.8953	<u>u</u>	33.77 / 0.9003						

(a) JPEG / 28.10dB

(b) AR-CNN / 28.85dB

(c) TNRD / 29.54dB

(d) DnCNN-3 / 29.70dB

DnCNN for hybrid noises

• DnCNN is robust to hybrid noises

25 3 30

NTIRE 2017 Challenge on SISR

				Track 1: bicubic downscaling					Track 2: unknown downscaling					
			$\times 2$		×	<3	×	4	$\times 2$	}	$\times 3$		$\times 4$	
Team	User		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
SNU_CVLab ¹	limbee		34.93 ₍₁₎	0.948	$48 \mid 31.13_{(1)} 0.889 \mid 26.91^{*}_{(14)}$		$26.91^{*}_{(14)}$	0.752*	34.00(1)	0.934	30.78 ₍₁₎	0.881	$28.77_{(1)}$	0.826
SNU_CVLab ²	sanghyun		$34.83_{(2)}$	0.947	$31.04_{(2)}$	0.888	$29.04_{(1)}$	0.836	$33.86_{(2)}$	0.932	$30.67_{(2)}$	0.879	$28.62_{(2)}$	0.821
helloSR	sparkfirer	.	$34.47_{(4)}$	0.944	$30.77_{(4)}$	0.882	$28.82_{(3)}$	0.830	33.67(3)	0.930	$30.51_{(3)}$	0.876	$28.54_{(3)}$	0.819
Lab402	iorism		34.66(3)	0.946	$30.83_{(3)}$	0.884	$28.83_{(2)}$	0.830	32.92(7)	0.921	$30.31_{(4)}$	0.871	$28.14_{(6)}$	0.807
VICLab	SJChoi		$34.29_{(5)}$	0.943	$30.52_{(5)}$	0.880	$28.55_{(5)}$	0.845						
UIUC-IFP	fyc0624		34.19(6)	0.942	30.44(7)	0.877	28.49(6)	0.821	28.54(14)	0.840	$28.11_{(14)}$	0.816	24.96(15)	0.717
HIT-ULSee	chenyunj	in	$34.07_{(7)}$	0.941	30.21(9)	0.871	$28.49_{(6)}$	0.822	33.40(4)	0.927	30.21(6)	0.871	$28.30_{(4)}$	0.812
I hate mosaic	tzm10033	306213	$34.05_{(8)}$	0.940	30.47(6)	0 878	28 59	0.824						
				ļ		HIT	-ULSee	e soluti	on is <i>th</i>	e mos	t efficie	<i>nt</i> , it	gives th	e best
Team	Track 1:	bicubic do	wnscaling	Track 2	: unknown	dowi trad	e-off he	etween	runtime	and o	mality o	f the t	esults	
	$\times 2$	×3	$ \times 4$	$\times 2$	$\times 3$	uau					uanty 0		csuits.	<i>,</i>
SNU_CVLab ¹	67.240	28.720	20.050	8.778	4.717	2.602	Tor	ch (Lua)		G	TX TITAN X		36 ResBloc	ks
SNU_CVLab ²	14.070	7.340	5.240	4.600	2.310	1.760	Tor	ch (Lua)		G	TX TITAN X		80 ResBloc	ks
helloSR	27.630	27.970	18.470	11.540	19.260	15.360	Tor	ch (Lua)		G	TX TITAN X		stacked ResN	Nets
Lab402	4.080	5.120	5.220	4.120	1.880	1.120	Matcon	vnet+Matlab	,	(GTX 1080ti	wa	velet+41 conv	. layers
VICLab	0.539	0.272	0.186				Ma	tconvnet		TI	TAN X Pascal	L	22 layers	
UIUC-IFP	1.683	1.497	1.520	1.694	1.474	1.523	TensorF	Flow+Pythor	n		8×GPUs		6+4 ResBlo	cks
HIT-ULSee	0.370	0.160	0.100	0.370	0.160	0.100	N	/latlab	Titan X Pascal		2	20 (sub-pixel) layers		
							00 Matiab		n Titan X Maxwell			Joint ResNets		

Content

- Image Restoration
- Can we learn more from a set of degraded/clean image pairs?
- Can we directly learn a plain CNN for image restoration?
- Can we extend denoising CNN for general image restoration?
- Can we learn more for MAP-based restoration: efficiency and flexibility?

Revisting the MAP framework

• MAP

$$\mathbf{x} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\|_{2}^{2} + \Phi(\mathbf{x})$$

- The degradation model is known
- Once the regularization term (i.e. prior) is given, optimization can be used to solve any image restoration task.
- Then, the problem becomes:
 - Learn image prior from a set of high-quality images
 - Desigin proper optimization methods to solve the MAP model

Let's take the optimization into account

$$\mathbf{x} = \arg\min_{\mathbf{x}} \frac{1}{2} \|\mathcal{A}(\mathbf{x}) - \mathbf{y}\|_{2}^{2} + \Phi(\mathbf{x})$$

- Alternating direction method of multipliers
 - Reformulation

$$\mathcal{L}_{\mu}(\mathbf{x}, \mathbf{z}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^{2} + \lambda \Phi(\mathbf{z}) + \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}\|^{2}$$

• Optimization

$$\begin{cases} \mathbf{x}_{k+1} = \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|^2 + \mu \|\mathbf{x} - \mathbf{z}_k\|^2 \\ \mathbf{z}_{k+1} = \arg\min_{\mathbf{z}} \frac{\mu}{2} \|\mathbf{z} - \mathbf{x}_{k+1}\|^2 + \lambda \Phi(\mathbf{z}) \\ \mathbf{z}_{k+1} = \arg\min_{\mathbf{z}} \frac{1}{2(\sqrt{\lambda/\mu})^2} \|\mathbf{x}_{k+1} - \mathbf{z}\|^2 + \Phi(\mathbf{z}) \end{cases}$$

• Actually, what we need is not the explicit form of $\Phi(x)$ but a denoiser

$$\mathbf{z}_{k+1} = Denoiser(\mathbf{x}_{k+1}, \sqrt{\lambda/\mu})$$

Incorporating denoising CNN with ADMM

ISTA and FISTA

• ISTA: $\mathbf{x}^{k+0.5} = \mathbf{x}^{k} - \frac{1}{L} \mathbf{A}^{T} (\mathbf{A} \mathbf{x}^{k} - \mathbf{y})$ $\mathbf{x}^{k+1} = \arg \min_{\mathbf{x}} \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{k+0.5}\|_{2}^{2} + \Phi(\mathbf{x})$ • FISTA

 $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$ $\mathbf{y}_{k+1} = \mathbf{x}_k + \left(\frac{t_k - 1}{t_{k+1}}\right) (\mathbf{x}_k - \mathbf{x}_{k-1})$ $\mathbf{x}^{k+0.5} = \mathbf{y}_{k+1} - \frac{1}{L} \mathbf{A}^T (\mathbf{A} \mathbf{y}_{k+1} - \mathbf{y})$ $\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} \frac{L}{2} \|\mathbf{x} - \mathbf{x}^{k+0.5}\|_2^2 + \Phi(\mathbf{x})$

• Also, what we need is not the explicit form of $\Phi(\mathbf{x})$ but a denoiser

$$\mathbf{z}_{k+1} = Denoiser(\mathbf{x}_{k+1}; \sqrt{1/L})$$

Incorporating denoising CNN with ISTA

And we have two choices

- Choice 1: End-to-end training of ADMM-CNN or ISTA-CNN
 - When the optimization method is changed, the network should be re-trained.
 - When the restoration task is changed (e.g. from deblurring to superresolution), the network might also be re-trained.
- Choice 2:
 - Train a set of CNN denoisers for a set of noise levels
 - Deploy the denoiser CNNs to any models and tasks as we need
 - Flexible, no re-training is required.

Denoising CNNs (CVPR 2017)

• 25 denoising CNNs for noise level [0. 50]

- Residual learning + BN
- Dilated filter
- Code: https://github.com/cszn/ircnn

Image Denoising

• BSD68: gray

Methods	BM3D	WNNM	TNRD	MLP	Proposed
$\sigma = 15$	31.07	31.37	31.42	-	31.63
$\sigma = 25$	28.57	28.83	28.92	28.96	29.15
$\sigma = 50$	25.62	25.87	25.97	26.03	26.19

• BSD68: color

Noise Level	5	15	25	35	50
CBM3D	40.24	33.52	30.71	28.89	27.38
Proposed	40.36	33.86	31.16	29.50	27.86

Image Deblurring

Methods	σ	C.man	House	Lena	Monar.	Leaves	Parrots				
	Gau	ssian blu	r with sta	andard de	viation 1.	6					
IDDBM3D		27.08	32.41	30.28	27.02	26.95	30.15				
NCSR	n	27.99	33.38	30.99	28.32	27.50	30.42				
MLP	Ζ	27.84	33.43	31.10	28.87	28.91	31.24				
Proposed		28.12	33.80	31.17	30.00	29.78	32.07				
Kernel 1 (19×19) [38]											
EPLL	2 5 5	29.43	31.48	31.68	28.75	27.34	30.89				
Proposed	2.55	32.07	35.17	33.88	33.62	33.92	35.49				
EPLL	7.65	25.33	28.19	27.37	22.67	21.67	26.08				
Proposed	7.05	28.11	32.03	29.51	29.20	29.07	31.63				
		Ker	nel 2 (17	(×17) [<mark>38</mark>	8]						
EPLL	2 55	29.67	32.26	31.00	27.53	26.75	30.44				
Proposed	2.55	31.69	35.04	33.53	33.13	33.51	35.17				
EPLL	7.65	24.85	28.08	27.03	21.60	21.09	25.77				
Proposed	7.05	27.70	31.94	29.27	28.73	28.63	31.35				

Super-reso	lution
------------	--------

			-				-					
Dataset	Scale	Kernel	Channel	SRCNN	VDSR	NCSR	SPMSR	SRBM3D	SRBM3D _G	SRBM3D $_C$	$Proposed_G$	$\operatorname{Proposed}_C$
2 Sat5 2	2	Diauhia	Y	36.65	37.56	-	36.11	37.10	36.34	36.25	37.43	37.22
	2	Bicubic	RGB	34.45	35.16	-	33.94	-	34.11	34.22	35.05	35.07
	Dioubio	Y	32.75	33.67	-	32.31	33.30	32.62	32.54	33.39	33.18	
Sels	Sets 5 Bicubic	BICUDIC	RGB	30.72	31.50	-	30.32	-	30.57	30.69	31.26	31.25
		3 Gaussian	Y	30.42	30.54	33.02	32.27	-	32.66	32.59	33.38	33.17
	5		RGB	28.50	28.62	30.00	30.02	-	30.31	30.74	30.92	31.21
	2	Bicubic	Y	32.43	33.02	-	31.96	32.80	32.09	32.25	32.88	32.79
	2		RGB	30.43	30.90	-	30.05	-	30.15	30.32	30.79	30.78
Sat14	3	Bioubio	Y	29.27	29.77	-	28.93	29.60	29.11	29.27	29.61	29.50
56114	5	Dicubic	RGB	27.44	27.85	-	27.17	-	27.32	27.47	27.72	27.67
	3	Causaian	Y	27.71	27.80	29.26	28.89	-	29.18	29.39	29.63	29.55
3	Gaussian	RGB	26.02	26.11	26.98	27.01	-	27.24	27.60	27.59	27.70	

(a) Ground-truth

(b) Zoomed LR image

(c) SRCNN (24.46dB)

(d) VDSR (24.73dB)

(e) $Proposed_G$ (29.32dB)

Content

- Image Restoration
- Can we learn more from a set of degraded/clean image pairs?
- Can we directly learn a plain CNN for image restoration?
- Can we extend denoising CNN for general image restoration?
- Can we learn more for MAP-based restoration: efficiency and flexibility?

Limitation of Denoising CNNs for Restoration

- Multiple denoising CNNs
- Computational bottleneck
- Hard to end-to-end training

Using Gaussian Denoising as an Example

- Conventional CNN for restoration,
 - CNN aims to learn an explicit mapping for each setting on A and σ

$$\hat{\mathbf{x}} = F(\mathbf{y}; \mathbf{A}, \sigma^2)$$

• Now let's return to MAP model

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2\sigma^2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \Phi(\mathbf{x})$$

• The solution actually defines an implicit function

$$\hat{\mathbf{x}} = F(\mathbf{y}, \mathbf{A}, \sigma^2)$$

As for Gaussian denoising

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \frac{1}{2\sigma^2} \|\mathbf{y} - \mathbf{x}\|^2 + \lambda \Phi(\mathbf{x}) \quad \Box \quad \hat{\mathbf{x}} = f(\mathbf{y}, \sigma)$$

FFDNet (Zhang et al., Arxiv 2017)

- Flexibility: a single model to handle noisy image with different noise levels or even spatially variant noise.
- Fast speed: highly efficient without sacrificing denoising performance.
- Robustness: robust to the estimation error of noise levels.

FFDNet (Zhang et al., Arxiv 2017)

- Taking noise map as input
- Denoising on sub-images
- Orthogonal Regularization on Convolution Filters
- Test code: https://github.com/cszn/FFDNet

Denoising performance and run time

Methods	BM3D	WNNM	MLP	TNRD	DnCNN	FFDNet
$\sigma = 15$	31.07	31.37	_	31.42	31.72	31.62
$\sigma = 25$	28.57	28.83	28.96	28.92	29.23	29.19
$\sigma = 35$	27.08	27.30	27.50	_	27.69	27.73
$\sigma = 50$	25.62	25.87	26.03	25.97	26.23	26.30
$\sigma = 75$	24.21	24.40	24.59	_	24.64	24.78

Methods	Device	256×256		512×512		1024×1024	
		Gray	Color	Gray	Color	Gray	Color
BM3D	CPU(ST)	0.59	0.98	2.52	3.57	10.77	20.15
DnCNN	CPU(ST)	2.14	2.44	8.63	9.85	32.82	38.11
	CPU(MT)	0.74	0.98	3.41	4.10	12.10	15.48
	GPU	0.011	0.014	0.033	0.040	0.124	0.167
FFDNet	CPU(ST)	0.44	0.52	1.81	2.14	7.24	8.51
	CPU(MT)	0.18	0.19	0.73	0.79	2.96	3.15
	GPU	0.006	0.007	0.012	0.016	0.038	0.054

Robustness to Noise Level Mismatching

BM3D

Proposed

From top to bottom: denoising results with input noise levels 5, 10, 15, 20, 50, and 75, respectively.

SRMD: From Denoising to Super-Resolution

- Multiple degradations
- Image downsampling

$$\boldsymbol{y} = (\boldsymbol{x} \otimes \boldsymbol{k}) \downarrow_s + \boldsymbol{n}$$

- Blur kernel
- Noise level
- Downsampler

Blur Kernel

SRMD

$$\hat{\mathbf{x}} = F(\mathbf{y}, \mathbf{k}, \sigma^2)$$

- nonuniform noise
- non-uniform blur kernel

Network architecture

• Testing code: https://github.com/cszn/SRMD

Result

Deg	Degradation Settings		VDSR [22]	NCSR [10]	IRCNN [54]	DnCNN [53]+SRMDNF	SRMD	SRMDNF	
Kernel	Down-	Noise	$PSNR(\sqrt{2}/\sqrt{3}/\sqrt{4})$						
Width	sampler	Level	$1510K(\times 27 \times 57 \times 4)$						
0.2	Bicubic	0	37.56/33.67/31.35	- /23.82/-	37.43/33.39/31.02	_	37.53/33.76/31.59	37.75/34.09/31.96	
0.2	Bicubic	15	26.02/25.40/24.70		32.60/30.08/28.35	32.47/30.07/28.31	32.72/30.38/28.76	_	
0.2	Bicubic	50	16.02/15.72/15.46	—	28.20/26.25/24.95	28.20/26.27/24.93	28.48/26.45/25.18		
1.3	Bicubic	0	30.57/30.24/29.72	- /21.81/-	36.01/33.33/31.01	·	36.68/33.64/31.48	37.40/34.10/31.99	
1.3	Bicubic	15	24.82/24.70/24.30		29.96/28.68/27.71	27.68/28.78/27.71	30.95/29.39/28.18	_	
1.3	Bicubic	50	15.89/15.68/15.43		26.69/25.20/24.42	24.35/25.19/24.39	27.41/25.79/24.78	-	
2.6	Bicubic	0	26.37/26.31/26.28	- /21.46/-	32.07/31.09/30.06	_	32.81/32.23/31.01	34.10/32.88/31.77	
2.6	Bicubic	15	23.09/23.07/22.98	-	26.44/25.67/24.36	- /21.33/23.85	28.44/27.53/26.80	-	
2.6	Bicubic	50	15.58/15.43/15.23	_	22.98/22.16/21.43	- /19.03/21.15	25.80/24.72/24.01	-	
1.6	Direct	0	- /30.54/ -	- /33.02/ -	- /33.38/ -	-	- /33.74/ -	- /34.01/ -	

Result: Urban100

Result: nonuniform noise and blur

Results

(a) LR image

(c) SelfEx [18]

(d) SRMD

Results

(a) LR image (b) VDSR [22] (c) Waifu2x [47] (d) SRMD

Summary

- Model-guided Network design and learning: Discriminative learning of stage-wise parameters for blind deconvolution
- Task-specific CNN: Development of CNN-based models for image denoising
- Incorporation of traditional model and CNN for general image restoration
- Taking degradation model parameters as input to CNN
- Future work: More practical image restoration or generation

Related Publications

- W. Zuo, D. Ren, D. Zhang, S. Gu, L. Lin, L. Zhang, Discriminative Learning of Iteration-wise Priors for Blind Deconvolution, CVPR 2015.
- W. Zuo, D. Ren, D. Zhang, S. Gu, L. Zhang. Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution, IEEE Trans. Image Processing, 25(4): 1751 - 1764, 2016.
- S. Gu, W. Zuo, S. Guo, Y. Chen, C. Chen, L. Zhang. Learning Dynamic Guidance for Depth Image Enhancement, CVPR 2017.
- K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising, IEEE Trans. Image Processing, 2017
- K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep CNN denoiser prior for image restoration. In CVPR 2017.
- L. Zhang, W. Zuo, Image Restoration: From Sparse and Low-rank Priors to Deep Priors, IEEE Signal Processing Magazine, Sept. 2017.
- K. Zhang, W. Zuo, L. Zhang. FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising, https://arxiv.org/abs/1710.04026
- K. Zhang, W. Zuo, L. Zhang. Learning a Single Convolutional Super-Resolution Network for Multiple Degradations, https://arxiv.org/abs/1712.06116