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Abstract

This paper presents a salient object detection method
that integrates both top-down and bottom-up saliency in-
ference in an iterative and cooperative manner. The top-
down process is used for coarse-to-fine saliency estimation,
where high-level saliency is gradually integrated with finer
lower-layer features to obtain a fine-grained result. The
bottom-up process infers the high-level, but rough saliency
through gradually using upper-layer, semantically-richer
features. These two processes are alternatively performed,
where the bottom-up process uses the fine-grained saliency
obtained from the top-down process to yield enhanced high-
level saliency estimate, and the top-down process, in turn,
is further benefited from the improved high-level informa-
tion. The network layers in the bottom-up/top-down pro-
cesses are equipped with recurrent mechanisms for layer-
wise, step-by-step optimization. Thus, saliency information
is effectively encouraged to flow in a bottom-up, top-down
and intra-layer manner. We show that most other saliency
models based on fully convolutional networks (FCNs) are
essentially variants of our model. Extensive experiments on
several famous benchmarks clearly demonstrate the supe-
rior performance, good generalization, and powerful learn-
ing ability of our proposed saliency inference framework.

1. Introduction
Salient object detection (SOD) aims to highlight the

most visually important object(s) during human perception
of a visual stimulus. This task is essential for understanding
the visual world from the perspective of human visual at-
tention behavior. This paper proposes a novel, biologically-
inspired network architecture: an iterative top-down and
bottom-up saliency inference network, which imitates the
interactive top-down and bottom-up processes of human
perception. During the top-down inference, the rough high-
level saliency (Fig. 1(a)) from the semantically-rich, upper-
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Figure 1: High-layer saliency (a) is used to guide fine-grained
saliency estimation in a top-down fashion. The finest saliency (b)
is then adapted to refine higher-layer saliency (c) in a bottom-up
manner. Alternating these two processes (1)→(2)→· · ·→(N ) re-
sults in an iterative and cooperative top-down and bottom-up in-
ference network.

layer features is improved by progressively integrating finer,
low-level features. The resulting finest saliency (Fig. 1(b))
is then leveraged, in turn, to guide improved high-level
saliency estimation in a bottom-up way. This produces a
new high-level estimate (Fig. 1(c)), which is better than the
original (Fig. 1(a)) and further guides a more accurate finest
saliency estimation (Fig. 1(d)) in a new top-down process.
This whole procedure can be repeated, alternating between
the top-down and bottom-up processes, until the final, opti-
mal saliency estimate is obtained (Fig. 1(f)). In this way, the
top-down and bottom-up inferences are interlaced to work
in an iterative and cooperative fashion. In particular, two
aspects inspire our network design, as follows.

Firstly, our model is motivated by studies of the hu-
man perception system by the psychology and cogni-
tive communities. To explain human visual information-
processing, two types of perceptive processes are distin-
guished: bottom-up and top-down processing. In the
top-down procedure [8], high-level semantic knowledge
or contextual information guides information processing.
The bottom-up process [7], in contrast, is carried out in



the opposite direction; from the stimulus to high-level vi-
sual understanding, with each successive stage performing
an ever more complex analysis of the input. Most psy-
chologists [13, 12] would now argue that both top-down
and bottom-up processes are involved in perception. This
prompts us to explore both systems for saliency inference
in a joint and iterative way. Since it is well-known that top-
network layers carry semantically-rich information, while
bottom layers involve low-level details, we consider top-
layer saliency to be a globally harmonious interpretation of
a visual scene, which is used to guide fine-grained saliency
estimation in a top-down manner. Conversely, if starting
from the finest saliency, we can leverage it to refine the
upper-layer saliency in a bottom-up fashion.

Recent advances in FCN-based SOD models are the sec-
ond inspiration for our network design. Their success is
due to their progressive integration of rough upper-layer
saliency with low-level but spatially defined features. The
final estimate is thus the finest and most accurate. This
prompts us to consider why not leverage the final, finest
saliency to reversely improve the previous, upper-layer es-
timates through a bottom-up procedure, and then repeat the
coarse-to-fine, top-down process to obtain a more accurate,
finest estimate? With this intuitive yet significant insight,
we develop a powerful, general saliency inference network
that deploys the two processes in a cooperative manner.
This network uses the fine-grained saliency from the top-
down process to refine higher-layer estimates, in a bottom-
up direction. The refined high-level saliency is then used
to further encourage more efficient top-down inference. As
seen, such a design efficiently promotes the exchange of
saliency information between different layers, resulting in
better learning and inference abilities. Even more signif-
icantly, our model is equipped with a complete and itera-
tive feed-forward/feed-back inference strategy, rather than
the commonly-used feed-forward networks [26, 46, 41, 20]
or UNet-like models [10, 45, 24, 46, 11], which provide
only simple coarse-to-fine inference. Feed-forward saliency
models are limited due to their lack of a feed-back strategy.
Although UNet-like SOD models partially solve this, they
do not consider the interaction and integration of the top-
down and bottom-up processes. From the perspective of
network design, most previous FCN-based saliency models
can be considered as specific forms of our proposed saliency
inference network. A more detailed discussion of this will
be given in §2.2. Although some previous works [1, 31, 23]
have applied top-down and bottom-up strategies, they are
either not learnt in an end-to-end trainable manner or do not
let the two processes cooperate iteratively with each other.

For higher effectiveness, iterative saliency inference is
performed on two levels. Macroscopically, multiple top-
down/bottom-up inference layers are stacked together, to
enable top-down/bottom-up inference to be performed it-

eratively. On a micro-level, our saliency inference module
is achieved by a recurrent network, which shares the spirit
of [39, 34, 22, 35], performing step-by-step saliency esti-
mation within each individual layer. By adding supervision
to all the side-outputs of each iteration, our model can be
efficiently trained by a deeper supervision strategy.

To summarize, our model has several essential charac-
teristics and advantages: i) it provides deeper insight into
the SOD task by imitating top-down and bottom-up human
perception processes; ii) it provides an end-to-end frame-
work that learns top-down/bottom-up saliency inference in
a joint and iterative way; iii) it provides a powerful tool that
extends deep SOD models through a complete and iterative
feed-forward and feed-back strategy, making it sufficiently
general and flexible to encompass most other FCN-based
saliency models. Finally, the promising results on several
famous SOD benchmarks [42, 43, 18, 21, 25, 33] demon-
strate effectiveness of our network design.

2. Related Work
In §2.1, we first review representative deep learning

based SOD models. Then, in §2.2, to demonstrate the ad-
vantage of our proposed model, we provide a detailed dis-
cussion on its relation to other FCN-based saliency models.

2.1. Deep Learning Based SOD Models
With the rapid development of deep learning techniques,

deep neural network based SOD models have substantially
improved. Early attempts focused on fully-connected net-
works, which leverage compact image regions, such as
over-segments [18], superpixels [48, 19, 17, 11], or object
proposals [32]), as basic processing units. The deep fea-
tures extracted from the image regions are fed into a fully-
connected classifier for saliency score prediction. Com-
pared to previous, non-deep learning SOD methods, the
fully-connected SOD schemes display improved perfor-
mance. However, they suffer from loss of spatial infor-
mation and are quite time-consuming since they perform
saliency inference in a segment-wise manner.

To overcome the aforementioned drawbacks, later SOD
models directly map an input image to a pixel-wise saliency
prediction, using fully convolutional networks (FCNs). Sev-
eral works [10, 45, 24, 46, 11, 44] tried to integrate multi-
layer features together to preserve high-level semantic in-
formation as well as spatial details. For example, in [10], a
skip-layer structure was proposed to build connections be-
tween different network layers for a more comprehensive
saliency representation. Others emphasized the value of vi-
sual fixation [14, 39, 4] for explicit, object-level saliency
understanding. In addition, some [15, 34, 22, 35, 39] at-
tempted to leverage recurrent neural networks to optimize
saliency estimation step-by-step. Differentiable attention
models were also explored in several designs [44, 23, 37, 3].



Figure 2: Schematization of previous FCN-based saliency models and our iterative top-down and bottom-up inference network. (a)
Typical feed-forward network based SOD models only perform feed-forward inference. (b) Top-down inference based SOD models carry
out top-down refinement via CNNs (left) or RNNs (right). (c) Our model iteratively performs top-down and bottom-up inference, and thus
the two processes can benefit each other. See §2.2 for more details.

FCN-based SOD models generally display impressive
results, demonstrating the advantages of applying neural
networks to this task. However, they do not typically con-
sider the top-down process and seldom explore the top-
down and bottom-up inference in a joint, iterative, and end-
to-end manner. More discussion regarding this will be de-
tailed in the next section.

2.2. Relation to Previous FCN-based SOD Models
We shall now discuss the relation between our proposed

model and general FCN-based saliency methods, from the
perspective of network architecture. This will better situate
our work with respect to previous studies and help highlight
our contributions. As shown in Fig. 2, we classify previous
FCN based models into two categories: feed-forward net-
work based models, and top-down inference based models.

Feed-forward network based models [26, 46, 41, 20,
30, 40] are built upon a feed-forward, fully convolu-
tional encoder-decoder architecture, i.e., several sequen-
tially stacked convolution and deconvolution layers. As
shown in Fig. 2 (a), such a network design is straightfor-
ward and widely used, but has the disadvantage of losing
much spatial detail due to the pooling operation within the
encoder.

Top-down inference based methods, mainly inspired by
the UNet [28] and top-down segmentation model [27], per-
form saliency inference in a top-down refinement fash-
ion, i.e., gradually optimizing the rough, upper-layer esti-
mate through the finer, inferior-layer features. These meth-
ods can be further categorized into two classes. The first
one [10, 45, 24, 46, 11, 44, 23, 37, 3, 38], as shown on the
left of Fig. 2 (b), is a fully convolutional network, where
top-down inference is achieved by convolution layer. The
second class [15, 34, 22, 35, 39], as illustrated on the right
of Fig. 2 (b), introduce recurrent mechanisms to iteratively
optimize each side-out by updating the hidden states of the
RNN. While all of these methods benefit from top-down in-
ference, few consider using it in conjunction with a bottom-

up process. Liu et al. [23] are the exception to this. How-
ever, while they do also consider bottom-up saliency prop-
agation, the two processes are not carried out in an iterative
and cooperative manner.

Fig. 2 (c) gives the core scheme of our iterative top-down
and bottom-up saliency inference network. As shown, the
model first performs top-down, coarse-to-fine saliency in-
ference to obtain the finest saliency estimate (shown in the
blue rectangle). The bottom-layer output is then leveraged
to refine the upper-layer estimates in reverse (shown in the
green rectangle). Using the more accurate top-level saliency
estimate, a more efficient top-down inference can be per-
formed. These top-down and bottom-up processes are iter-
atively performed to produce improved, step-wise results.
The top-down/bottom-up inference modules are formed by
the RNN. In this way, the proposed model inherits the ad-
vantages of the aforementioned top-down inference based
saliency models, while going a step further and using the
top-down/bottom-up processes in a joint, iterative and end-
to-end manner. Most previous FCN-based SOD models can
be viewed as special cases of our proposed model.

3. Our Method
In §3.1 we first present the formulations of our iterative

top-down and bottom-up saliency inference model. In §3.2,
we discuss possible variations and implementation details.

3.1. Iterative Top-down and Bottom-up
Saliency Inference Model

A convolutional neural network, typically borrowed
from the convolutional parts of VGGNet [29] or ResNet [9],
is first used as a saliency feature extractor. It consists of a se-
ries of convolution layers, interleaved with pooling and non-
linear activation operations, enabling it to capture multiple
levels of abstraction from a visual stimulus. The features
from the bottom layers encode richer, low-level informa-
tion, while the upper-layer activations carry more high-level
semantics, with less spatial detail. We view the gradual



Figure 3: Detailed network architecture of the suggested iterative top-down and bottom-up inference network. (a) Simplified schematiza-
tion of our model. (b) Illustration of top-down saliency inference. (c) Illustration of top-down inference cascaded with bottom-up inference.
(d)-(g) Illustration of different weight-sharing strategies, where RNN-based top-down/bottom-up inference layers of different weights are
labeled with different textures. See §3.1 for full discussions. (h) Detailed network architecture of the suggested model with RNN-based
top-down/bottom-up inference layers, where the recurrent nature of the RNN is leveraged to gradually improve saliency estimation within
each layer. See §3.2 for details.

integration of upper-layer saliency estimates with inferior-
layer features as top-down saliency inference. This pro-
duces finer saliency because more detailed spatial informa-
tion is used. Similarly, a finer saliency can be combined
with an upper-layer feature to produce a higher-level but
more coarse saliency, referred as bottom-up saliency infer-
ence. The central hypothesis is that the highly-accurate,
finest saliency obtained from the top-down inference can be
used to provide a more accurate high-level saliency estimate
through a bottom-up process; the more accurate high-level
saliency further enables more efficient bottom-up inference.
In this way, these two processes are performed in a joint and
iterative manner to encourage one another.

Let I ∈ RW×H×3 and F denote an input image and
the feature extractor network, respectively. Hierarchical
saliency features withL levels are obtained by: {Fl}Ll=1=

F(I), where Fl ∈Rwl×hl×cl. As shown in Fig. 3 (a), in our
model, the top-layer saliency SL∈ [0, 1]wL×hL

is first esti-
mated as a high-level saliency interpretation of the visual
scene, as it utilizes the most semantically-rich featureFL.
This is used to guide fine-grained saliency estimation in a
top-down manner.
Top-down saliency inference. For an inferior l-th level
(l∈{1, . . . , L−1}), given the upper-layer saliency estimate
Sl+1 ∈ [0, 1]w

l+1×hl+1

, the corresponding finer saliency
Sl ∈ [0, 1]w

l×hl

can be formulated through a top-down in-
ference layer T l : Rwl×hl×(cl+1) 7→ [0, 1]w

l×hl

:

Sl = T l([U(Sl+1),Fl]), (1)

where U(·) is upsampling operation that resizes the upper-
layer saliency Sl+1 into the current spatial resolution wl×

hl. [·, ·] denotes the concatenation operation. The top-down
inference layer is composed of several conv (or RNN) and
activation layers, details of which will be elaborated in §3.2.

As discussed in §2.2, most previous FCN-based SOD
methods can be modeled by Eq. 1, i.e. they perform
top-down inference layer-by-layer until obtaining the fi-
nal, finest saliency estimation S1 ∈ [0, 1]w

1×h1

(see
Fig. 3 (a)). One fundamental characteristics that distin-
guishes our method from others is that, after completion of
the top-down inference process, we further use the finest
saliency S1 to reversely optimize upper-layer saliency esti-
mates in a bottom-up manner. Previous methods have ex-
tensively and empirically confirmed that the finest saliency
achieves the best performance. Thus, we can predict that
applying a bottom-up inference process to S1 will yield bet-
ter higher-layer saliency estimates. A bottom-up saliency
inference is thus derived, as follows.
Bottom-up saliency inference. In the l-th network layer
(l ∈ {2, . . . , L}), a bottom-up saliency inference layer is
designed as Bl :Rwl×hl×(cl+1) 7→ [0, 1]w

l×hl

, which uses the
inferior-layer saliency estimate Sl−1 ∈ [0, 1]w

l−1×hl−1

and
current-layer saliency feature Fl∈Rwl×hl×cl as inputs, and
produces a refined saliency estimate Sl∈ [0, 1]wl×hl

:

Sl ← Bl([D(Sl−1),Fl]), (2)

where ‘←’ indicates the updating process, and B(·) is
the necessary downsampling operation. As shown in
Fig. 3 (c), during the bottom-up inference process, the in-
ferior saliency is combined with the current-layer feature to
develop a better high-level saliency.
Iterative top-down and bottom-up inference. The



bottom-up inference can be used to achieve a more accu-
rate top-level saliency SL. In other words, the more precise
starting point enables us to perform more accurate top-down
inference. Repeating this process leads to an iterative top-
down and bottom-up saliency inference framework.

More formally, for the l-th network layer, the corre-
sponding saliency estimate Sl can be iteratively updated by
repeatedly performing top-down and bottom-up inference:

Sl ← T l(. . . T l(Bl+1(T l(. . .)))). (3)

As such, this model mimics the interactive top-down and
bottom-up processes of the human perception system by
arranging them in a cascaded and cooperative manner
(Fig. 3 (a)). Fig. 1 and 4 (3rd, 4th and 5th rows) visual-
ize the improved results after several iterations. Detailed
quantitative studies can be found in §4.3.
Feature-sharing and weight-sharing. Before delving into
a detailed overview of the network implementations, it
is worth discussing some important characteristics of our
model. One significant element is the sharing of features
{Fl}Ll=1 between the top-down and bottom-up inference
stages and across different iterations. This provides the ad-
vantage of high computational efficiency, since features are
only calculated once, regardless of the number of iterations.

Another important characteristic of our model is
weight-sharing. Rather than simply learning each top-
down/bottom-up inference layer in different iterations in-
dividually (Fig. 3 (d)), for a given l-th level, we introduce
weight-sharing between bottom-up (or top-down) inference
layers in different iteration steps (Fig. 3 (e)). Addition-
ally, by changing our network design slightly (Fig. 3 (f)),
we can enforce parameter-sharing among different bottom-
up (or top-down) inference layers across all iterations and
layers. Specifically, since the bottom-up (and top-down)
inference layers are parameterized by a set of conv ker-
nels, we can add dimension-unifying layers that unite the
channel-dimensions of the input features of all bottom-up
(and top-down) inference layers so that they are the same.
The dimension-unifying layer R can be implemented by a
1×1 conv kernel, as a feature-dimensionality reduction func-
tion. As such, the number of parameters of R is linear to
the dimensions of the input feature channel. Accordingly,
Eqs. 1-2 can be reformulated as follows:

Sl = T l(Rl([U(Sl+1),Fl])),

Sl ← Bl(Rl([D(Sl−1),Fl])).
(4)

Furthermore, if pursuing an extremely light-weight form,
we can even employ parameter-sharing among all the
bottom-up {Bl}Ll=1 and top-down inference layers {T l}Ll=1,
across all iteration steps (Fig. 3 (g)). This can be achieved
by letting the dimension-unifying layers compress each in-
put of the bottom-up/top-down inference layers to have
the same channel-dimension. In such a situation, itera-
tive top-down and bottom-up inference is achieved by a

light-weighted network with few parameters. In summary,
through weight-sharing, the proposed iterative top-down
and bottom-up inference layers can be used as add-ons to
modern network architectures. This demonstrates the gen-
eral and flexible nature of our proposed model.

3.2. Possible Variants and Detailed Architecture
Interestingly, our model offers a general, unified and

flexible framework, instead of being limited to a specific
network architecture. This enables us to explore several
variants by implementing the top-down/bottom-up infer-
ence layers in different ways. We continue by next formal-
izing these possible configurations.
CNN-based top-down/bottom-up inference. The most
straightforward way to implement the top-down/bottom-up
inference layers is by modeling them as a stack of conv
layers. By equipping them with non-linear activations,
the conv layers can learn complex inference functions that
leverage upper- or inferior-layer saliency and current-layer
feature for fine-grained (top-down process) or higher-level
(bottom-up process) saliency inference in a non-linear way.
RNN-based top-down/bottom-up inference. Sharing a
similar spirit to RNN-based SOD models [15, 34, 22, 35,
39], we can also employ an RNN in top-down/bottom-up
inference layers. This introduces a feed-back mechanism
into each inference layer, enabling more efficient propaga-
tion of information. With the recurrent model, the saliency
inference is performed step-by-step for each layer, at each
iteration. Additionally, to preserve spatial details, convo-
lutional RNNs, rather than fully connected ones, should be
adopted. A convRNN can be constructed by replacing dot
products with spatial convolutions. In this way, the top-
down inference in Eq. 1 can be formulated as:

ht = T l
covRNN ([U(Sl+1),Fl], ht−1),

Sl
t = T l

Readout(ht),

Sl = Sl
T .

(5)

where ht indicates the hidden state at step t ∈ [1, . . . , T ],
T l
Readout(·) is a readout function (1×1 conv with sigmoid)

that outputs saliency Sl
t from ht, and the final Sl

T at step T
is used as the output saliency Sl of the current top-down in-
ference layer T l. Note that, for a given top-down inference
layer T l, the input features are the same for each step, since
it operates on static images. The top-down inference layer
in Eq. 2 can be calculated in a similar way. Please see Fig. 3
(h) for a detailed illustration.

Here, we use the advantages of the recurrent nature of the
RNN to iteratively optimize the saliency features of static
images, rather than to model the temporal dependency of
sequential data. Our model is not limited to specific RNN
structures. In our experiments (§4.3), we implement top-
down/bottom-up inference layers as convRNN, convGRU,
and convLSTM, respectively. Additionally, the network



Figure 4: Qualitative comparison of seven state-of-the-art deep SOD models: RAS [3], PAGR [47], PICA [23], FSN [4], AMU [45],
UCF [46], HEDS [10] and our model. It can be observed that the proposed model generates more accurate saliency estimations. Addition-
ally, the saliency estimates are gradually improved with an increasing number of bottom-up and top-down iterations (from the 3rd row to
the 5th row). Best viewed in color.

with CNN-based top-down/bottom-up inferences simply be
considered as a special case of the one based on RNNs,
where the total number of update steps T of each RNN is
set to 1. Thus, we equip our model with RNN-based top-
down/bottom-up inference layers, and test the performance
with different update steps T in §4.3.
Training with deeper supervision. Lee et al. [16] pro-
posed a deep supervision strategy, i.e., adding supervisions
into each network side-output layer. This has been widely
used in previous FCN-based SOD models. In our approach,
due to the iteration of bottom-up/top-down inference and
the use of RNN models, we propose a deeper supervision
training strategy. In other words, we provide further su-
pervision to the outputs from each iteration (of the bottom-
up/top-down inferences) and each update step (of the RNN
units). Formally, let Sl,k

t,n ∈ [0, 1]w
l×hl

denote the saliency
from the t-th step of the RNN unit of the k ∈ {bottom-up,
top-down} process, with the l-th network layer, during the
n-th iteration. Gl ∈{0, 1}wl×hl

denote the corresponding
ground-truth. Our model can be trained by minimizing the
following loss:

L({Sl,k
t,n}l,k,t,n,{G

l}l)=
L∑

l=1

∑
k∈{bottom-up,

top-down}

N∑
n=1

T∑
t=1

LC(S
l,k
t,i ,G

l)

︸ ︷︷ ︸
deeper supervision

, (6)

where LC(·) indicates the cross-entropy loss, which is
widely used in SOD field. Our deeper supervision strat-
egy improves the discriminativeness of each top-down and
bottom-up inference layer. It also encourages the RNN unit
to learn saliency representations faster and more efficiently,
through the supervision of its intermediate outputs. This has
never been explored in previous SOD models.
Implementation details. To demonstrate the generaliza-
tion ability of our model, we use the conv parts of VG-

GNet [29] or ResNet50 [9] as our feature extractor. In
our implementation, for simplicity, each conv kernels of the
convRNN unit in the bottom-up/top-down inference layers
is set as 3×3 with 16 channels. The channels of the in-
put features of the bottom-up/top-down inference layers are
uniformly compressed to 64. The dimension-unifying layer
R is acquired through a 1×1 conv layer. For these layers,
RELU is used as the activation function. We set the total
number of update steps T of the RNN units to 2 and the total
iteration steps N of the top-down and bottom-up process to
3. In the next section, we will present more detailed exper-
iments to explain the choices for the feature extraction net-
work (e.g., VGGNet, ResNet50), the bottom-up/top-down
inference layer variants (e.g., convRNN, convLSTM, con-
vGRU), the total update steps T and the iteration steps N .

Our model is fully differentiable and can thus be effi-
ciently trained in an end-to-end manner. Following [45, 17,
34], we train our model using the THUS10K [5] dataset,
which has 10, 000 images with pixel-wise annotations. The
training images are uniformly resized to 224×224. Data
augmentation techniques (e.g., flipping, cropping) are also
performed. The networks are trained over 10 epochs, for
a total of about 12 hours, using an Nvidia TITAN X GPU.
The output S1,top-down

T,N ∈ [0, 1]224×224 of the last top-down in-
ference layer after the final update step T and final iteration
step N is used as our final saliency result.

4. Experiments
4.1. Experimental Setup
Datasets. For the performance evaluation, we use six fa-
mous SOD benchmarks: ECCSD [42], DUT-OMRON [43],
HKU-IS [18], PASCAL-S [21], SOD [25] and DUT-
STE [33]. All these datasets are human-labeled with pixel-
wise ground-truth for quantitative evaluations.



Methods ECCSD [42] DUT-OMRON [43] HKU-IS [18] PASCAL-S [21] SOD [25] DUTSTE [33]
F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓ F-score ↑ MAE ↓

VGGNet backbone
MDF [18] .831 .108 .694 .092 .860 .129 .764 .145 .785 .155 .657 .114

LEGS [32] .831 .119 .723 .133 .812 .101 .749 .155 .691 .197 .611 .137
ELD [17] .865 .080 .700 .092 .844 .071 .767 .121 .760 .154 .697 .092
MC [48] .822 .107 .702 .088 .781 .098 .721 .147 - - - -
SU [14] .88 .06 .68 .07 - - .77 .10 - - - -

RFCN [34] .898 .109 .701 .111 .895 .089 .827 .118 .805 .161 .752 .090
DHS [22] .905 .061 - - .892 .052 .820 .091 .793 .127 .799 .065
KSR [36] .801 .133 .742 .157 .759 .120 .649 .137 .698 .199 .660 .123

NLDF [24] .905 .063 .753 .080 .902 .048 .831 .112 .808 .130 .777 .066
DLS [11] .825 .090 .714 .093 .806 .072 .719 .136 - - - -

AMU [45] .889 .059 .733 .097 .918 .052 .834 .103 .773 .145 .750 .085
UCF [46] .868 .078 .713 .132 .905 .074 .771 .128 .776 .169 .742 .117

FSN [4] .910 .053 .741 .073 .895 .044 .827 .095 .781 .127 .761 .066
PICA [23] .919 .047 .762 .068 .908 .042 .845 .079 .812 .104 .826 .054

DGRL [37] .916 .043 .750 .068 .902 .037 .837 .076 .805 .106 - -
PAGR [47] .904 .061 - - .897 .048 .815 .094 - - .807 .059

RAS [3] .908 .056 .758 .068 .900 .045 .804 .105 .809 .124 .807 .059
C2S [20] .902 .054 .731 .080 .887 .046 .834 .082 .786 .124 .783 .062

Ours (VGGNet) .921 .041 .770 .060 .919 .040 .847 .073 .815 .102 .830 .050
VGGNet backbone + CRF

DCL [19] .898 .071 .732 .087 .907 .048 .822 .108 .784 .126 .742 .150
HEDS [10] .915 .053 .714 .093 .913 .040 .830 .112 .802 .126 .799 .065

PICA-C [23] .919 .036 .753 .059 .911 .031 .841 .079 .794 .102 .819 .046
Ours (CRF) .923 .032 .772 .055 .920 .030 .849 .072 .817 .098 .832 .045

ResNet backbone
SRM [35] .910 .056 .707 .069 .892 .046 .783 .127 .792 .132 .798 .059

PICA-R [23] .924 .047 .773 .065 .906 .043 .844 .087 .817 .109 .838 .051
Ours (ResNet) .926 .040 .780 .059 .920 .038 .848 .072 .820 .100 .836 .048

ResNet backbone + CRF
PICA-RC [23] .929 .035 .772 .054 .913 .031 .844 .077 .813 .100 .840 .041

Ours (ResNet+CRF) .931 .032 .781 .056 .920 .030 .848 .071 .821 .095 .840 .040

Table 1: Quantitative results with maximum F-measure and MAE on six widely used SOD benchmarks: ECCSD [42], DUT-OMRON
[43], HKU-IS [18], PASCAL-S [21], SOD [25] and DUTSTE [33]. The leading entries in each group are boldfaced. See §4.2 for details.

Evaluation metrics. Two widely adopted metrics: F-
measure and mean absolute error (MAE) are used in our
experiments. See [2, 6] for more detailed definitions.

4.2. Performance Comparison
Our model is compared with 21 state-of-the-art deep

SOD methods [18, 32, 19, 17, 48, 14, 34, 22, 10, 36, 24,
11, 45, 46, 35, 4, 23, 37, 44, 3, 20]. For a fair comparison,
we use either the implementations with the recommended
parameters or the saliency maps provided by the authors.
[39] is excluded as it uses more training data.
Quantitative evaluation. Because some methods [19,
10, 23] are post-processed using fully connected condi-
tional random field (CRF) or different backbones (e.g., VG-
GNet [29], ResNet50 [9]), we also report our results with
these settings. In Table 1, we show the results of quantita-
tive comparisons for the Maximum F-measure and MAE.
We observe that our model consistently outperforms all
other competitors, across all metrics.
Qualitative evaluation. Results for qualitative compar-
isons are given in Fig. 4; showing the proposed model is ap-
plicable to several challenging scenes well, including large

Methods SOD [25] DUTSTE [33]
F-score ↑ MAE ↓ F-score ↑ MAE ↓

VGGNet+CNN .809 .109 .821 .058
VGGNet+convRNN .814 .099 .828 .053

VGGNet+convLSTM .811 .106 .825 .056
VGGNet+convGRU .815 .102 .830 .050

Table 2: Ablation study for different implementations of top-
down and bottom-up saliency inference layers. VGGNet is used
as the backbone. The update stages of the RNN units are uni-
formly set as 2. The iteration of top-down and bottom-up saliency
inference is performed 3 times.

foregrounds, complex backgrounds and objects with similar
appearances to backgrounds, etc.

4.3. Ablation Studies
In this section, we perform extensive ablation studies to

comprehensively assess the effectiveness of each essential
component, as well as the overall performance of the differ-
ent variations and implementations of our model.
Feature extractor network. From Table 1 we can observe
that the model with the ResNet backbone outperforms the
one built upon VGG-16.
Different implementations of top-down and bottom-



Side- N=1 N=2 N=3 N=4 N=5
outputs T-D B-U T-D B-U T-D B-U T-D B-U T-D

S5 (conv 5) .133 .116 - .098 - .096 - .097 -
S4 (conv 4) .108 .093 .086 .080 .076 .076 .078 .080 .081
S3 (conv 3) .086 .081 .075 .068 .063 .064 .066 .066 .068
S2 (conv 2) .071 .068 .064 .061 .059 .058 .059 .060 .062
S1 (conv 1) .062 - .054 - .050 - .051 - .053

Table 3: Ablation study for the side-outputs using different iter-
ations of joint top-down and bottom-up inference. Performance is
evaluated on DUTSTE [33] with MAE. VGGNet + convGRU is
used as the basic setting.

Update Steps SOD [25] DUTSTE [33]
of RNN units F-score MAE F-score MAE

T =1 .810 .112 .819 .060
T =2 .815 .102 .830 .050
T =3 .817 .105 .828 .053
T =4 .812 .111 .823 .056

Table 4: Ablation study for various update steps of
the RNN units of the top-down/bottom-up inference layers.
VGGNet+convGRU+(N=3) is used as the basic setting.

up saliency inference layers. Next, we study the
performance of different implementations of our top-
down and bottom-up saliency inference layers. Based
on the discussions in §3.2, we derive four baselines:
VGGNet+CNN, VGGNet+convRNN, VGGNet+convLSTM,
and VGGNet+convGRU, using a VGGNet backbone. From
Table 2 we find that the RNN variants perform better than
the one based on CNNs. This is because RNN units intro-
duce a feed-back mechanism into each inference layer, en-
abling intra-layer step-wise optimization, while CNN con-
stituents only allow feed-forward estimation. We also find
slight changes in performance among the different RNN
variants. The best choice appears to be the basic RNN or
the GRU. This is perhaps because there is no need to model
long-term dependency. It is also more difficult to train the
LSTM due to its larger number of parameters. In the follow-
ing sections, we apply convGRU as the implementations for
the top-down/bottom-up saliency inference layers.
Effectiveness of iterative and cooperative top-down and
bottom-up saliency inference. To demonstrate our central
notion that iterative top-down and bottom-up saliency infer-
ence can enhance performance, we present the MAE scores
of different side-outputs during different iteration steps in
Table 3. It is clearly shown that, within each top-down (T-D)
and bottom-up (B-U) iteration, the saliency estimates from
the T-D are improved through the use of B-U. Additionally,
the results gradually improve with more iterations (N≤3).
Side-outputs. When we look at the statistics in Table 3,
we find that, with upper-layer guidance, the inferior layers
gradually produce better results, demonstrating the effec-
tiveness of our coarse-to-fine process.
Update steps of the RNN in the top-down/bottom-up
saliency inference layers. We now assess the perfor-
mance using different update steps for the RNN in the top-
down/bottom-up inference layers. From Table 4, we see

Parameter Sharing Model Size SOD [25] DUTSTE [33]
(MB) F-score MAE F-score MAE

Strategy i (Fig. 3 (d)) 448 .817 .103 .832 .051
Strategy ii (Fig. 3 (e)) 402 .815 .102 .830 .050
Strategy iii (Fig. 3 (f)) 375 .812 .104 .825 .053
Strategy iv (Fig. 3 (g)) 364 .807 .103 .828 .056

Table 5: Ablation study for different parameter-sharing strategies.
VGGNet+convGRU+(N=3)+(T=2) is used as the basic setting.

Methods
SOD [25] DUTSTE [33]

F-score MAE F-score MAE

VGGNet+convGRU+deeper sup. .815 .102 .830 .050

w/o deeper sup. .807 .106 .823 .054

Table 6: Ablation study for the deeper supervision strategy using
a VGGNet+convGRU setting.

that increasing the number of update steps T for the RNN
units (up to 2 or 3 steps) can lead to enhanced performance.
Additionally, when T = 1, the corresponding convGRU-
based top-down/bottom-up saliency inference layers can be
viewed as a CNN-based implementation.
Parameter-sharing. In §3.1 and Fig. 3 (b)-(e), we dis-
cussed several possible ways of introducing parameter-
sharing. We report the performance for each strategy in
Table 5. As can be seen, the model with strategy i shows
relatively high performance, but has the largest number of
parameters, while strategy iv is the most light-weight. The
model with strategy ii achieves the best trade-off between
performance and model size.
Deeper supervision. Our model is trained using a deeper
supervision strategy (detailed in §3.2). In other words, for
each side-out layer, supervisions are fed into each RNN
update-step outputs during each top-down/bottom-up iter-
ation. Table 6 shows that such a strategy enhances perfor-
mance. This is because the errors in the loss can be directly
back-propagated into each iteration of the top-down and
bottom-up inferences and update steps of the RNN units.

5. Conclusion
We proposed a unified framework, the iterative top-down

and bottom-up inference network, for salient object detec-
tion. The model learns top-down, coarse-to-fine saliency in-
ference and bottom-up, shallow-to-deep saliency inference
in an iterative and end-to-end manner. Most importantly,
the two processes work in a cooperative way, i.e., the finest
saliency from the top-down process is used to guide higher-
layer saliency estimates in a bottom-up manner, while the
refined top-layer saliency further promotes an efficient top-
down process. We studied several variations of the model
and parameter-sharing strategies in depth. Extensive results
showed the superior performance of our model.
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