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Abstract

We consider an interesting problem—salient instance
segmentation in this paper. Other than producing bounding
boxes, our network also outputs high-quality instance-level
segments. Taking into account the category-independent
property of each target, we design a single stage salient
instance segmentation framework, with a novel segmenta-
tion branch. Our new branch regards not only local con-
text inside each detection window but also its surround-
ing context, enabling us to distinguish the instances in the
same scope even with obstruction. Our network is end-to-
end trainable and runs at a fast speed (40 fps when pro-
cessing an image with resolution 320 × 320). We eval-
uate our approach on a public available benchmark and
show that it outperforms other alternative solutions. We
also provide a thorough analysis of the design choices to
help readers better understand the functions of each part
of our network. The source code can be found at https:
//github.com/RuochenFan/S4Net.

1. Introduction

Rather than recognizing all the objects in a scene, we
human only care about a small set of interesting ob-
jects/instances [32]. A recent experiment [15] demonstrates
that interesting objects are often visually salient, reflecting
the importance of detecting salient objects. Locating ob-
jects of interest is also essential for a wide range of com-
puter graphics and computer vision applications. Such a ca-
pability allows many modern applications (e.g. image ma-
nipulation/editing [8, 57, 6] and robotic perception [56]) to
provide initial regions that might be of interest to users or
robots so that they can directly proceed to image editing or
scene understanding. Like [33], in this paper, we are also
interested in detecting salient instances given an input im-
age. Similar to salient object detection, salient instance seg-
mentation aims at detecting the most distinctive objects in
a scene, but differently it also identifies each individual in-
stance, i.e. outputting an accurate segment for each instance
and assigning it a unique label (see Fig. 1).

Cognitive psychology [55, 14] and neurobiology [41]

Figure 1: Illustrative examples produced by our approach,
which detects and segments salient instances regardless of
their semantic categories. Each category-agnostic salient
instance is illustrated with a unique color.

research suggested that human cortical cells may be hard
wired to preferentially respond to high contrast stimulus,
i.e. feature separation between foreground and background
regions plays a central role in salient object perception
[30, 29]. Effectively modeling the foreground/background
separation using local and global contrast [7, 31], back-
ground prior [63], and Gaussian mixture color model (as in
GrabCut [46]), etc., has been proven to be useful in a vari-
ety of traditional salient-object/figure-ground segmentation
tasks. Recently, convolutional neural networks (CNNs) are
becoming the dominant methods in nearly all closely re-
lated tasks, e.g. salient object detection [26, 35, 53], se-
mantic instance segmentation [11, 21, 22], and generic ob-
ject detection [20, 45, 12]. While these CNN-based meth-
ods have achieved remarkable success by learning powerful
multi-level feature representations for capturing different
abstracted appearance variations of the target categories,
they often ignore the important feature separation ability
between the target objects and their nearby background.

Existing CNN-based instance segmentation methods use
either RoIPooling [19, 24], or RoIWarp [10], or RoIAlign
[23] to capture the feature information inside the bound-
ing boxes. In contrast, we propose a region feature extrac-
tion layer, namely RoIMasking, to explicitly incorporate
foreground/background separation for improving salient in-
stance segmentation. Similar to the figure-ground segmen-
tation method, GrabCut [46], we explicitly mark the re-
gion surrounding the object proposals as the initial back-
ground, and explore the foreground/background feature
separations for salient instance segmentation in our segmen-
tation branch. More specifically, we flip the signs of the
feature values surrounding the proposals. The RoIMasking
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layer based segmentation branch is then integrated to the
efficient single-stage object detector FPN [37], for detect-
ing the pixel-wise segment of each salient instance. Inter-
estingly, our RoIMasking scheme is quantization-free and
scale-preserving, allowing more detailed information to be
successfully detected. Furthermore, our model is end-to-
end trainable and runs at 40fps on a single GPU when pro-
cessing a 320× 320 image.

For verification in the context of the killer applica-
tion, we apply our salient instance detector to the popular
weakly-supervised semantic segmentation task. As done in
[54, 27], we use the detected salient instances on the tiny
ImageNet dataset [47, 27] as heuristics to train the famous
semantic segmentation networks. We evaluate the results
on the popular PASCAL VOC 2012 semantic segmentation
benchmark [16] and show that our results outperform state-
of-the-art methods [54, 27] that leverage traditional salient
object cues [31, 26] by a large margin.

To sum up, the contributions of this paper are:
• We propose an end-to-end single-shot salient instance

segmentation framework, which not only achieves the
state-of-the-art performance but also runs in real time.
• We design a new RoIMasking layer which models fea-

ture separation between target objects and its nearby
background for high-quality segmentation.

2. Related Works

Salient instance segmentation is relatively a new task.
Some seminal methods have recently been proposed by
Zheng et al. [60] to find salient objects at bounding box
level. However, this method misses the important segmen-
tation information, which is essential for applications such
as image editing [8, 6] and weakly supervised segmenta-
tion [54]. Li et al. [33] formally define the salient instance
segmentation problem as jointly identifying salient regions
as well as individual object instances. They also proposed
an MSRNet [33] framework for instance-level salient ob-
ject segmentation. However, this method was excessively
reliant on the quality of the pre-computed edge maps (e.g.
MCG [43]) and produced sub-optimal results for compli-
cated real-world scenes (see also Sec. 4). Salient instance
segmentation is closely related to three major computer vi-
sion tasks: salient object detection, object detection, and
semantic instance segmentation.

2.1. Salient Object Detection

Salient object detection aims at jointly detecting the most
distinguished objects and segmenting them out from a given
scene. Early salient object detection methods mostly de-
pended on either global or local contrast cues [44, 7, 5, 31].
They designed various hand-crafted features (e.g., color his-
togram and textures) for each region [2, 17, 49] and fused

these features in either manual-designed [7] or learning-
based manners [52]. Because of their weak ability to pre-
serve the integrity of salient instances and the instabil-
ity of hand-crafted features, these methods were gradu-
ally taken place by later CNN-based data-driven methods
[26, 35, 53, 62, 18, 34, 33]. The key problems of these
salient object detection methods when applied to salient in-
stance segmentation task are two-fold. First, the integrity
of the salient objects is difficult to be preserved because the
distinguished regions might be parts of the interesting in-
stances. Second, salient object detection is a binary problem
and hence cannot be competent to instance-level segmenta-
tion.

2.2. Object Detection

The goal of object detection is to produce all the bound-
ing boxes for semantic categories. Earlier work mostly re-
lied on hand-engineered features (e.g. SIFT [40], SURF [4],
and HOG [13]). They built different types of image pyra-
mids to leverage more information across scales. Recently,
the emergence of CNNs greatly promoted the development
of object detectors. For example, R-CNN [20] and Over-
Feat [48] regarded CNNs as sliding window detectors for
extracting high-level semantic information. Given a stack
of pre-computed proposals [51, 9], these methods computed
its feature vectors for each proposal using CNNs and then
fed the features into a classifier. Later work [24, 19] took
as inputs the entire images and applied region-based detec-
tors to feature maps, substantially accelerating the running
speed. Faster R-CNN [45] broke through the limitation of
using pre-computed proposals by introducing a region pro-
posal network (RPN) into CNNs. In this way, the whole
network could be trained end-to-end, offering a better trade-
off between accuracy and speed compared to its previous
work. However, all the methods discussed above aim at out-
putting reliable object bounding boxes rather than instance
segments.

2.3. Semantic Instance Segmentation.

Earlier semantic instance segmentation methods [11, 21,
22, 42] were mostly based on segment proposals gener-
ated by segmentation methods [51, 43, 3]. In [10], Dai et
al. predicted segmentation proposals by leveraging a multi-
stage cascade to refine rectangle regions from bounding box
proposals gradually. Li et al. [36] proposed to integrate
the segment proposal network into an object detection net-
work. More recently, He et al. implemented a Mask R-CNN
framework, extending the Faster R-CNN [45] architecture
by introducing a segmentation branch. Albeit more and
more fascinating results, these methods are not suitable for
our task for two reasons. First, not all the categories and ob-
jects are salient. Second, the semantic instances all belong
to a pre-defined category collection, missing the important



Figure 2: The pipeline of the proposed method. (a) A brief illustration of our framework. For convenience, we do not show
the details of the backbone we adopt. Readers may refer to [37] for more information. (b) The segmentation branch proposed
in Mask R-CNN [23], which is composed of a stack of consecutive convolutional layers. (c) Our proposed segmentation
branch which further enlarges the size of the receptive field but with the same number parameters as in (b).

Figure 3: An example of interactive figure-ground segmen-
tation using GrabCut [46].

ability to deal with unknown categories, i.e. class-agnostic
salient instances.

3. S4Net

The design choices of our method are based on the ap-
plication requirements of high-quality salient instance seg-
mentation in real time. We design an end-to-end single-shot
salient instance segmentation framework —S4Net, which is
built upon the top of the state-of-the-art single-shot object
detector for efficiency consideration.

3.1. Observation

Recent instance-level semantic segmentation methods
[23, 36] have shown the strong ability to segmenting seman-
tic instances, using RoIWarp [10], or RoIAlign [23]. How-
ever, the segmentation branches of these methods only focus

on the features inside the proposals to describe the appear-
ance variations of the target instances themselves, lacking
the ability to distinguish different instances.

Before CNN-based methods became popular, utilizing
feature separation between foreground and background has
been the dominant mechanism in similar tasks such as
salient object detection [7, 31, 63] and figure-ground seg-
mentation [46]. The ability of effectively modeling the
foreground-background feature separation is so powerful
that these methods [7, 46, 63] could achieve remarkable
success by utilizing such feature separation in the target
image alone, without any additional information by train-
ing on many images. An example is shown in Fig. 3. Users
only need to draw a rectangle region (shown in red) around
the target object. The GrabCut method [46] initializes the
foreground/background color models, i.e. Gaussian Mixture
Models (GMM), using image pixels inside/outside the rect-
angle region respectively. Amazing segmentation results
could be achieved, without learning from other training im-
ages. Notice that the color of some target object regions
in this image is very similar to certain background regions
(i.e. the houses). However, the GMM color model effec-
tively captures the slight color difference (indistinguishable
to human eyes) in this specific image. Such slight color dif-
ference only exists in this specific image, and could be im-
possible to learn from training examples of similar scenes.
It means that many training examples for color feature mod-
elling will not only be expensive to collect but also be less
useful for dealing with such a situation.



Unfortunately, the ability of involving such powerful
foreground-background feature separation has been missing
in existing CNN-based segmentation methods. Motivated
by this, we propose to explicitly leverage more features cor-
responding to the background area to help make the salient
instances more prominent as shown in Fig. 5. This scheme
allows more features representing the background area (rel-
ative to the salient instance) to be viewed by the segmenta-
tion branch, enlarging the receptive field of the segmenta-
tion branch and meanwhile enhancing the contrast between
foreground and background, especially when there are oc-
clusions.

3.2. Framework

The pipeline of S4Net is shown in Fig. 2, which involves
two components: a bounding box detector and a segmenta-
tion branch. Both components share the same base model.
As in most object detection works, we select ResNet-50
[25] as our base model.

Single-Shot Object Detector. Considering the efficiency
of the entire network, we adopt a single-shot object detec-
tor [38] with FPN [37] as the base model in order to lever-
age the multi-level features. To reduce the runtime cost,
we discard the lateral connected to conv2 while keeping the
rest unchanged (i.e. conv3-conv6). Four detection heads are
connected to each lateral layer as shown in Fig. 2(a). The
head structure is the same to the one used in Faster R-CNN
[45], but with different strides to perform detection at mul-
tiple scales.

Single-Shot Segmentation Branch. Different from ex-
isting instance level semantic segmentation methods, such
as Mask R-CNN [23], our segmentation branch is also
single-shot. The bounding boxes predicted by the detec-
tion branch and the output of the lateral layer with stride
8 in the backbone network are fed into our segmentation
branch. As shown in Fig. 2(a), our segmentation branch
contains a RoIMasking layer for instance feature extraction
and a salient instance discriminator for identifying salient
instances.

3.3. RoIMasking

RoIPool [19] and RoIAlign [23] are two standard oper-
ations for extracting fixed-size features from the regions of
interest. Both RoIPool and RoIAlign sample a region of
interest into a fixed spatial extent of H ×W , and typically
H =W , e.g. 7×7 in [19] and 28×28 in [23]. The RoIPool
first quantizes RoIs by uniformly dividing them intoH×W
spatial bins. After max-pooling each spatial bin, the output
feature maps with size H ×W can be generated. Since the
quantization in RoIPool is performed by rounding opera-
tion, it introduces misalignments between the RoI and the

extracted features. As a remedy, RoIAlign avoids quantiza-
tion by using bilinear interpolation.

However, both RoIPool and RoIAlign focus on the re-
gions inside the proposals, neglecting the rest region. As
discussed in Sec. 3.1, the region surrounding the current
object RoI contains valuable information for distinguish-
ing between the target object and its background. Unfortu-
nately, although some layer-fusion techniques such as fea-
ture pyramid network [37] attempt to embed high-level and
comprehensive information in a feature map, both RoIPool
and RoIAlign do not explicitly and effectively explore the
information surrounding the RoI. Moreover, the sampling
process in these two operations makes these operations un-
able to maintain the aspect ratio and resolution of the re-
gions of interest, possibly hurting the quality of the results.
In this subsection, we design a new resolution-preserving
and quantization-free layer, called RoIMasking, to take the
place of RoIPool or RoIAlign. We also attempt to explore
feature separation between foreground and background re-
gions for improving segmentation quality.

Binary RoIMasking. We first introduce a simplified ver-
sion of RoIMasking which we call binary RoIMasking. The
binary RoIMasking receives feature maps and proposals
predicted by the detection branch. A binary mask is gen-
erated according to the position and size of a given rect-
angle proposal. The values inside the rectangle are set to
1 and otherwise 0. Fig. 5a illustrates a binary version of
RoIMasking, in which the bright and dark areas are asso-
ciated with labels 1 and 0, respectively. The output of the
binary RoIMasking layer is the input feature maps multi-
plied by this mask. In Fig. 4, we show a typical example of
the output feature maps. Different from RoIPool [19] and
RoIAlign [23], our binary RoIMasking keeps the original
aspect ratio and resolution of the feature maps. In Sec. 4, we
experimentally verify that the proposed binary RoIMasking
outperforms the RoIPool and RoIAlign baselines.

Expanded Binary RoIMasking. In this paragraph, we
also consider an extensive version of binary RoIMasking
by simply enlarging the proposal region as illustrated in
Fig. 5b. Compared to the standard binary RoIMasking, ex-
panded binary RoIMasking takes into account more back-
ground/context information, which means the segmentation
branch has a larger receptive field. We will show more
quantitative comparisons in our experiment section.

Ternary RoIMasking. To make better use of the back-
ground information around the regions of interest, we fur-
ther advance the expanded binary RoIMasking to a ternary
case. Because of the ReLU activation function, there are
no negative values in the feature maps before RoIMasking.
To explicitly notify the segmentation branch that the region
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(a) Input image (b) Feature map before masking (c) Binary RoIMasking (d) Ternary RoIMasking

Figure 4: The output feature maps of two different types of RoIMasking layers. (b) Before RoIMasking, all of the values in
the feature map are non-negative because of the ReLU layer. (c) After binary RoIMasking, the regions outside the proposal
are set to zeros. (d) Ternary RoIMasking additionally considers a larger area, in which feature values are non-positive.

(a) Binary mask (b) Ex-Binary mask (c) Ternary mask

Figure 5: Three different types of masks used in our
RoIMasking layer. (a) Binary mask only considers the
regions inside the orange rectangle; (b) Expanded binary
mask considers a larger rectangle area than binary mask-
ing; (b) The ternary mask takes into account both the re-
gion inside the orange rectangle and its surrounding regions
marked in yellow.

outside the proposals should be considered as background,
we flip the signs (i.e. set the corresponding mask values to -
1) of the feature values around the region of interest, which
is illustrated in yellow color in Fig. 5c. In this way, the
features around regions of interest are distinct from those
inside the bounding boxes of the salient instances. This al-
lows the segmentation branch to be able to not only make
use of features inside the region of interest as well as the
surrounding context (as in extended binary RoIMasking),
but also explicitly emphasis on foreground/background fea-
ture separation. The feature map after ternary RoIMasking
is illustrated in Fig. 4d. It is worth mentioning that this op-
eration introduces no additional computation cost into our
model. Ternary RoIMasking leads to a large improvement
as we show in the experiment part (Sec. 4). In the follow-
ing, we abbreviate ternary RoIMasking as RoIMasking for
notational convenience unless otherwise noted.

3.4. Analysis of RoIMasking

This subsection demonstrates the importance of the
background information around the regions of interest in
the feature maps and the effectiveness of ternary RoIMask-
ing. To do so, we explore the impact of each activation in
the feature maps before RoIMasking on the performance.
Inspired by [58], we visualize the function of a specific neu-

(a) Binary masking (b) Ternary masking

Figure 6: Gradient maps using binary masking and ternary
masking. As can be seen, ternary masking considers more
perimeter information of the region around the proposal.
The input image in this experiment is shown in Fig. 4(a).

ron in this model by drawing a gradients map. After loading
the fully trained model weights, we do a forward pass us-
ing a specific image. In this process, the activation value
of the feature maps before RoIMasking, Hi,j,c, is extracted
and stored. Next, we do a backward pass. Note that in
the general training stage, back-propagation is performed
to calculate the gradients of the total loss with respect to the
weights in the neural network. But in this experiment, we
load the stored Hi,j,c as a variable, and regard the convo-
lution kernels as constant. Back-propagation is performed
to calculate the gradients of the instance segmentation loss
with respect to each feature map input to RoIMasking, i.e.
Gi,j,c = ∂Lsal/∂Hi,j,c. The absolute value of Gi,j,c re-
flects the importance of the feature map pixel Hi,j,c to the
saliency task. After summing up |Gi,j,c| along the channel
dimension, the gradient map Gi,j can be obtained.

Fig. 6 shows the gradient maps for binary RoIMasking
and ternary RoIMasking, respectively. The orange rectan-
gle is the ground truth bounding box of a salient instance.
By definition, the pixels inside the orange rectangle in the
ternary mask are set to 0 and the pixels between the orange
and blue boxes are set to -1. It is obvious that there are
evident responses in the background (marked as ‘-1’ in the
ternary mask) area in Fig. 6b. In Fig. 6a, there are only few
responses between the orange and blue boxes. This phe-
nomenon indirectly indicates the importance of the context



information around the regions of interest. More experi-
mental results can be found in the experiment section.

3.5. Segmentation Branch

Taking into account the structure of our backbone, we
take the feature maps from the lateral layer associated with
conv3 with a stride of 8 as the input to our segmentation
branch on the trade-off between global context and details.
Before connecting our RoIMasking layer, we first add a
simple convolutional layer with 256 channels and kernel
size 1× 1 for compressing the number of channels. Despite
the RoIMasking layer, it is still difficult to distinguish the
salient instances from the other instances inside the same
RoI. To this end, we add a segmentation branch similar to
Mask-RCNN [23] to help better distinguish the instances.

As pointed out in [61], enlarging receptive field is help-
ful for segmentation related tasks. Inspired by [61, 23],
we design a new segmentation branch by introducing skip
connections and dilated convolutional layers (See Fig. 2c).
Other than two residual blocks, we also add two 3× 3 max
pooling with stride 1 and dilated convolutional layers with
dilation rate 2 for enlarging the receptive field. All the con-
volutional layers have a kernel size 3 × 3 and stride 1. For
the channel numbers, we set the first three to 128 and the
rest 64, which we found are enough for salient instance seg-
mentation.

3.6. Loss function

As described above, there are two sibling branches in our
framework for detection and saliency segmentation, respec-
tively. The detection branch undertakes objectness classifi-
cation task and coordinates regression task, and the segmen-
tation branch is for saliency segmentation task. Therefore,
we use a multi-task loss L on each training sample to jointly
train the model:

L = Lobj + Lcoord + Lseg. (1)

Regarding the fact that positive proposals are far less than
negative samples in the detection branch, we adopt the fol-
lowing strategy. Let P and N be the collections of positive
and negative proposals, NP andNN be the numbers of pos-
itive and negative proposals (NP � NN ), then we calculate
the positive and negative objectness loss separately to avoid
the domination of negative gradients during training. Thus
we have:

Lobj = −(
1

NP

∑
i∈P

log pi +
1

NN

∑
j∈N

log(1− pj)), (2)

in which pi is the probability of the ith proposal being pos-
itive.

We use SmoothL1 loss as Fast-RCNN [19] for coor-
dinate regression and cross-entropy loss similar to Mask-
RCNN [23] for the segmentation branch.

4. Experiments

In this section, we carry out detailed analysis to elabo-
rate the functions of each component in our method by ab-
lation studies. We also perform thorough comparisons with
the state-of-the-art methods to exhibit the effectiveness of
our approach. We use the dataset proposed in [33] for all
experiments. This dataset contains 1,000 images with well-
annotated instance-level annotations. For fair comparisons,
as done in [33], we randomly select 500 images for training,
200 for validation, and 300 for testing.

Methods mAP0.5 mAP0.7 mAP0.5
O mAP0.7

O

RoIAlign [23] 85.2% 61.5% 79.2% 47.7%

RoIPool [19] 85.2% 61.1% 80.3% 50.9%

Binary RoIMasking 85.5% 62.4% 80.1% 49.4%

Ternary RoIMasking 86.7% 63.6% 81.2% 51.5%

Table 1: Ablation experiments for analyzing our RoIMask-
ing layer. We also list the results using the RoIAlign and
RoIPool proposed in Mask R-CNN [23] and Fast R-CNN
[19], respectively. Obviously, our proposed RoIMasking
outperforms RoIAlign and RoIPool even for the images
with occlusion.

4.1. Implementation Details
Training and Testing. In the training phase, the IoU is
used to determine whether a bounding box proposal is a
positive or negative sample in the detection branch. A
bounding box proposal is positive if it’s IoU > 0.5, and
negative if IoU < 0.5.

In the testing phase, the bounding boxes fed into the
RoIMasking layer are from the detection branch. But in the
training phase, we directly feed the ground truth bounding
boxes into the RoIMasking layer. This provides the segmen-
tation branch with more stable and valid training data and
meanwhile accelerates the training process, as been verified
by empirical experiments.

Hyper-parameters. Our proposed network is based on
the TensorFlow library [1]. The input images are aug-
mented by horizontal flipping. The hyper-parameters are
set as follows: weight decay (0.0001) and momentum (0.9).
We train our network on 2 GPUs for 20k iterations, with an
initial learning rate of 0.004 which is divided by a factor of
10 after 10k iterations.

4.2. Ablation Studies

To evaluate the effectiveness of each component in our
proposed framework, we train our model on the salient



Figure 7: Selected examples of instance-level saliency segmentation results on the dataset proposed by [33] (the line above)
and COCO [39] (the line below). Even obstructed instances can be well distinguished and segmented by our S4Net.

instance segmentation dataset [33]. Following the stan-
dard COCO metrics [39], we report results on mAP (av-
eraged precision over IoU thresholds), including mAP0.5

and mAP0.7. Furthermore, to analyze the ability to dis-
tinguish different instances, we also consider another set
which only contains instances with occlusion, which is de-
noted by mAPO.

Effect of RoIMasking. To evaluate the performance of
the proposed RoIMasking layer, we also consider using
RoIPool [19] and RoIAlign [23]. We replace our RoIMask-
ing with RoIPool and RoIAlign to perform two comparison
experiments while keep all other network structures and ex-
perimental settings unchanged. Quantitative evaluation re-
sults are listed in Tab. 1. As can be seen, our proposed bi-
nary RoIMasking and ternary RoIMasking both outperform
RoIPool and RoIAlign in mAP0.7. Specifically, our ternary
RoIMasking result improves the result using RoIAlign by
around 2.1 points. This reflects that considering more con-
text information outside the proposals does help for salient
instance segmentation.

To further verify the effectiveness of our RoIMasking
layer, we also consider a binary masking case in which the
values in the yellow area of Fig. 5d are all set to 1. The
penultimate line in Table 1 shows the corresponding results.
As can be seen, the results are even worse when the binary
masking is used. This fact reflects that simply enlarging the
regions of interest is not helpful for discriminating salient
instances. However, when the signs of the extended regions
in the mask are flipped (ternary RoIMasking), the best re-
sults can be obtained (the bottom line of Table 1). This
demonstrates that changing the signs of the extended re-
gions in the mask can explicitly increase the contrast be-
tween the salient instances and background. More impor-
tantly, the non-salient regions inside the proposals will tend
to be predicted to the same class as the extended regions.
Therefore, the feature separation ability between the target
objects and their nearby background plays an important role
in our approach.

Size of Context Regions. To better understand our
RoIMasking layer, we analyze how large the context re-
gions should be here. Suppose the bounding box size of a

α 0 1/6 1/3 1/2 2/3 1

mAP0.5 85.9% 86.4% 86.7% 86.5% 86.2% 85.9%

mAP0.7 62.5% 63.4% 63.6% 63.3% 62.4% 62.0%

Table 2: Performance of S4Net with different expanded ar-
eas. All the results shown here are based on ResNet-50 [25].
As can be observed, when α = 1/3 we obtain the best re-
sult.

salient instance is (w, h), where w and h are the width and
height, respectively. We define an expansion coefficient α
to denote the width of the ‘-1’ region in the RoI mask. So,
the size of the valid region is (w + 2αw, h + 2αh). By
default, we set α to 1/3. We also try different values of α
to explore its influence on the final results as shown in Ta-
ble 2 but found both larger and smaller values of α slightly
harms the performance. This indicates that a region size of
(w + 2w/3, h+ 2h/3) is enough for discriminating differ-
ent instances as larger ‘-1’ region may make more salient
instances be viewed, weakening the performance of identi-
fying the ‘real’ salient instances.

Number of Proposals. The number of proposals sent to
the segmentation branch also effects the performance. Ac-
cording to our experiments, more proposals lead to better
performance but more computational costs. Notice that the
performance gain is not obvious when the number of pro-
posals exceeds 20. Specifically, when we set the number
of proposals to 100, only around 1.5% improvement can be
achieved but the runtime cost increases dramatically. Tak-
ing this into account, we take 20 proposals as a trade-off
during the inference phase. Users may decide the number
of proposals by their tailored tasks.

Base Models. Besides the base model of ResNet-50 [25],
we also try another three popular base models, including
Resnet-101 [25], VGG16 [50], and MobileNet [28]. Tab.
3 lists the results when different base models are utilized.
As one can see, base models with better performance on
classification also works better in our experiments. For
speed, real-time processing can be achieved by our pro-



Base models mAP@0.5 mAP@0.7 Speed (FPS)

ResNet-101 [25] 88.1% 66.8% 33.3

ResNet-50 [25] 86.7% 63.6% 40.0

VGG16 [50] 82.2% 53.0% 43.5

MobileNet [28] 62.9% 33.5% 90.9

Table 3: Performance of S4Net when using different base
models. When we change the default ResNet-50 to ResNet-
101, another 3.2% improvement can be obtained in spite of
a little sacrifice on time cost. We also attempt to use the
recent MobileNet [28] as our base model and yield a frame
rate of more than 90 fps on a GTX 1080 Ti GPU.

Methods mAP0.5 mAP0.7 mAP0.5
O mAP0.7

O

MSRNet [33] 65.3% 52.3% - -
S4Net 86.7% 63.6% 81.2% 51.5%

Table 4: Quantitative comparisons with existing methods
on the ‘test’ set. As the instance segmentation maps of [33]
and related code are not available, thus we use ‘-’ to fill the
blank cells.

posed S4Net. When the size of input images is 320 × 320,
S4Net has a frame rate of 40.0 fps on a GTX 1080 Ti GPU.
Furthermore, using MobileNet [28] as our base model,
S4Net runs very fast at a speed of 90.9 fps.

4.3. Comparisons with the State-of-the-Arts

Unlike salient object detection which has been studied
for years, salient instance detection is a relatively new prob-
lem such that there is only one related work MSRNet [33]
that can be used for direct comparison. In this experiment,
we compare our S4Net based on ResNet-50 [25] with the
MSRNet method. We report the results on the ‘test’ set us-
ing mAP0.5 and mAP0.7 metric.

Quantitative Analysis. Two datasets are used in our com-
parison experiments. The results of comparative experi-
ments on dataset proposed by [33] are listed in Tab. 4. Our
proposed S4Net achieves better results in both mAP0.5 and
mAP0.7 compared to MSRNet [33]. Specifically, our ap-
proach improves the baseline results presented in MSRNet
[33] by about 21 points in mAP0.5. Regarding mAP0.7, we
also have a great improvement on the same dataset.

5. Applications

In this section, we apply our proposed S4Net to a popu-
lar vision task—weakly-supervised semantic segmentation.
For training samples with multiple keywords, such as the

Model Heuristic cues val set

DeepLab-VGG16 Sal maps [31] 49.8%

DeepLab-VGG16 Sal maps [26] 52.6%

DeepLab-VGG16 Att [59] + Sal [26] 53.8%

DeepLab-VGG16 Salient Instances 57.4%

DeepLab-ResNet101 Salient Instances 61.8%

Table 5: Semantic segmentation results with different initial
heuristic cues on the PASCAL VOC validation set. The best
result is highlighted in bold. Due to the space limitation, we
use abbreviations for convenience. As can be seen, training
with our instance-level saliency cues greatly outperforms
settings with regular saliency cues.

images in PASCAL VOC [16], discriminating different in-
stances is even essential for keyword assignment. The de-
tailed methodology can be seen in our supplementary ma-
terial. The results is shown in Table 5. It is obvious that
training with our instance segmentation on the same dataset
works much better than the settings in which other heuris-
tic cues are used. Our approach obtains a 4.8% performance
gain compared to using the DSS salient object detector [26].

6. Conclusions

In this paper, we present a single stage salient-
instance segmentation framework, which is able to seg-
ment instance-level salient objects in real time. The key
novelties include (i) the ROIMasking layer, which takes
into account both the information inside the proposals and
the context information outside the proposals and preserves
the original resolution and aspect ratio of the regions of
interest, and (2) an advanced salient instance discrimina-
tor which enlarges the receptive field of our segmentation
branch and thus boosts the performance. Thorough exper-
iments show that the proposed RoIMasking greatly outper-
forms RoIAlign and RoIPool, especially for distinguishing
instances in the same scope. Our S4Net achieves the state-
of-the-art performance on a publicly available benchmark.
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