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Revisiting Computer-Aided Tuberculosis
Diagnosis
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Abstract—Tuberculosis (TB) is a major global health threat, causing millions of deaths annually. Although early diagnosis and treatment
can greatly improve the chances of survival, it remains a major challenge, especially in developing countries. Recently, computer-aided
tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data. To address
this, we establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR)
images with corresponding bounding box annotations for TB areas. This dataset enables the training of sophisticated detectors for
high-quality CTD. Furthermore, we propose a strong baseline, SymFormer, for simultaneous CXR image classification and TB infection
area detection. SymFormer incorporates Symmetric Search Attention (SymAttention) to tackle the bilateral symmetry property of CXR
images for learning discriminative features. Since CXR images may not strictly adhere to the bilateral symmetry property, we also
propose Symmetric Positional Encoding (SPE) to facilitate SymAttention through feature recalibration. To promote future research on
CTD, we build a benchmark by introducing evaluation metrics, evaluating baseline models reformed from existing detectors, and running
an online challenge. Experiments show that SymFormer achieves state-of-the-art performance on the TBX11K dataset. The data, code,
and models will be released at https://github.com/yun-liu/Tuberculosis.

Index Terms—Tuberculosis, tuberculosis diagnosis, tuberculosis detection, symmetric search attention, symmetric positional encoding

✦

1 INTRODUCTION

TUBERCULOSIS (TB), a pervasive infectious disease, has
persistently ranked as the second leading cause of

morbidity and mortality, typically following HIV, over the
centuries [2], [3]. Despite the global COVID-19 outbreak
in 2020, TB continues to afflict 10 million individuals and
accounts for the death of 1.4 million people annually [4],
rendering it the second most lethal infectious disease after
COVID-19. Principally targeting the respiratory system, TB
is caused by Mycobacterium tuberculosis and propagates
through sneezing, severe coughing, or other means of dis-
seminating infectious bacteria. Hence, TB typically occurs
in the lungs through the respiratory tract. The vulnerability
of immunocompromised individuals, including those with
HIV and malnourished persons in developing countries, has
exacerbated this issue.

The mortality rate among TB patients remains exceed-
ingly high in the absence of appropriate treatment. Nev-
ertheless, early diagnosis of TB can significantly increase
the recovery rate with the administration of corresponding
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antibiotics [5]–[7]. As TB propagates rapidly, early diagnosis
also plays a crucial role in controlling the spread of in-
fection [6]. The rise of multidrug-resistant TB underscores
the urgent need for timely and accurate diagnostic methods
to monitor the progress of clinical treatment [8]. However,
TB diagnosis continues to pose a significant challenge [5]–
[7], [9]–[12]. Specifically, the gold standard for TB diagnosis
entails the microscopic examination of sputum samples and
bacterial cultures to identify Mycobacterium tuberculosis
[11], [12]. To ensure the safety of the examination process, a
biosafety level-3 (BSL-3) laboratory is required for culturing
Mycobacterium tuberculosis. This procedure can typically
take several months [5], [11], [12]. Compounding the is-
sue, many hospitals in developing countries and resource-
constrained communities lack the necessary infrastructure to
establish BSL-3 facilities.

On the other hand, X-ray imaging is the most prevalent
and data-intensive screening method in current medical im-
age examinations. Chest X-ray (CXR) can swiftly detect lung
abnormalities caused by pulmonary TB, making it a widely-
used tool for TB screening. The World Health Organization
also recommends CXR as the initial step in TB screening
[13]. Early diagnosis through CXR significantly aids in early
TB detection, treatment, and prevention of the disease’s
spread [5], [10], [13]–[15]. However, even experienced radi-
ologists may fail to identify TB infections in CXR images,
as the human eye struggles to discern TB areas in CXR
images due to its limited sensitivity to many details. Our
human study reveals that experienced radiologists from top
hospitals achieve an accuracy of only 68.7% when compared
with the gold standard.

Thanks to the remarkable representation learning capa-
bilities, deep learning has outperformed humans in various
domains such as face recognition [16], image classification
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TABLE 1
Summary of publicly available TB datasets. The size of our dataset
is about 17× larger than that of the previous largest dataset. Besides,
our dataset annotates TB infection areas with bounding boxes, instead

of only image-level labels.

Datasets Pub. Year #Classes Annotations #Samples

MC [25] 2014 2 Image-level 138
Shenzhen [25] 2014 2 Image-level 662

DA [6] 2014 2 Image-level 156
DB [6] 2014 2 Image-level 150

TBX11K (Ours) - 4 Bounding box 11,200

[17], object detection [18], [19], edge detection [20], [21],
and medical image analysis [22]–[24]. It is reasonable to
anticipate the application of deep learning’s robust potential
to TB diagnosis using CXR. Deep learning can automatically
localize the precise TB infection site 24 hours a day, never
getting tired like humans. However, deep learning relies on
extensive training data, which cannot be provided by exist-
ing TB datasets, as shown in Table 1. Since it is challenging
to collect large-scale TB CXR data due to the high cost and
privacy considerations, existing TB datasets have only a few
hundred CXR images. The scarcity of publicly available CXR
data has hindered the successful application of deep learning
in improving computer-aided tuberculosis diagnosis (CTD)
performance.

In order to deploy the CTD system to assist TB patients
worldwide, it is first necessary to address the issue of
insufficient data. In this paper, we contribute a large-scale
Tuberculosis X-ray (TBX11K) dataset to the community
through long-term collaboration with major hospitals. This
new TBX11K dataset surpasses previous CTD datasets in
several aspects: i) Unlike previous public datasets [6], [25]
containing only tens or hundreds of CXR images, TBX11K
consists of 11,200 CXR images, approximately 17 times
larger than the existing largest dataset, i.e., the Shenzhen
dataset [25], making it feasible to train deep networks; ii)
In contrast to image-level annotations in previous datasets,
TBX11K employs bounding box annotations for TB infec-
tion areas, allowing future CTD methods to recognize TB
manifestations and detect TB regions for assisting radiol-
ogists in definitive diagnoses; iii) TBX11K comprises four
categories: healthy, sick but non-TB, active TB, and latent
TB, as opposed to binary classification in previous datasets
(i.e., TB or non-TB), enabling future CTD systems to adapt
to more complex real-world scenarios and provide people
with more detailed disease analyses. Each CXR image in
the TBX11K dataset is tested using the gold standard (i.e.,
diagnostic microbiology) of TB diagnosis and annotated by
experienced radiologists from major hospitals. The TBX11K
dataset has been de-identified by data providers and ex-
empted by relevant institutions, allowing it to be publicly
available to promote future CTD research.

Based on our TBX11K dataset, we propose a simple yet
effective framework for CTD, termed as SymFormer. In-
spired by the inherent bilateral symmetry property observed in
CXR images, SymFormer leverages this property to enhance
the interpretation of CXR images. The bilateral symmetry
property denotes the similarity or identical appearance of
the left and right sides of the chest, indicating a symmetric

pattern. This property proves valuable in improving the
interpretation of CXR images. For instance, if there is a mass
or consolidation present on one side of the chest but not
the other, it could indicate a problem in that area. To tackle
this property, SymFormer incorporates the novel Symmetric
Search Attention (SymAttention) for learning discrimina-
tive features from CXR images. Since CXR images may
not strictly be bilaterally symmetric, we also propose the
Symmetric Positional Encoding (SPE) to facilitate SymAt-
tention through feature recalibration. SymFormer conducts
simultaneous CXR image classification and TB infection
area detection by adding a classification head onto the TB
infection area detector with a two-stage training diagram.

To promote future research on CTD, we establish a
benchmark on our TBX11K dataset. Specifically, we adapt
the evaluation metrics for image classification and object
detection to CTD, which would standardize the evaluation
of CTD. We also launch an online challenge using the test
data of TBX11K by keeping the ground truth of the test data
private, which would make future comparisons on CTD
fair. Besides, we construct several strong baseline models
for CTD by reforming existing popular object detectors.
Extensive comparisons demonstrate the superiority of Sym-
Former over these baselines.

Compared with the preliminary conference version [1],
we make plentiful extensions by proposing a novel Sym-
Former framework for CTD and validating its effectiveness
with extensive experiments. In summary, the contributions
of this paper are three-fold:

• We establish a large-scale CTD dataset, TBX11K,
which is much larger, better annotated, and more re-
alistic than previous TB datasets, enabling the train-
ing of deep neural networks for simultaneous multi-
class CXR image classification and TB infection area
detection rather than only binary CXR classification
in previous TB datasets.

• We propose a simple yet effective framework for
CTD, namely SymFormer, consisting of the novel
Symmetric Search Attention (SymAttention) and
Symmetric Positional Encoding (SPE) to leverage the
bilateral symmetry property of CXR images for signifi-
cantly improving CTD over baseline models.

• We build a CTD benchmark on our TBX11K dataset
by introducing the evaluation metrics, evaluating
several baselines reformed from existing object de-
tectors, and running an online challenge, which is
expected to set a good start for future research.

2 RELATED WORK

In this section, we first revisit previous TB datasets, followed
by a review of the existing research on CTD. Since our
proposed CTD method SymFormer uses self-attention of
vision transformers, we also discuss the recent progress of
vision transformers in medical imaging.

2.1 Tuberculosis Datasets
Since TB data are very private and it is difficult to diagnose
TB with the golden standard, the publicly available TB
datasets are very limited. We provide a summary for the
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publicly available TB datasets in Table 1. Jaeger et al. [25]
established two CXR datasets for TB diagnosis. The Mont-
gomery County chest X-ray set (MC) [25] was collected
through cooperation with the Department of Health and
Human Services, Montgomery County, Maryland, USA.
MC dataset consists of 138 CXR images, 80 of which are
healthy cases and 58 are cases with manifestations of TB.
The Shenzhen chest X-ray set (Shenzhen) [25] was collected
through cooperation with Shenzhen No. 3 People’s Hos-
pital, Guangdong Medical College, Shenzhen, China. The
Shenzhen dataset is composed of 326 norm cases and 336
cases with manifestations of TB, leading to 662 CXR images
in total. Chauhan et al. [6] built two datasets, namely DA and
DB, which were obtained from two different X-ray machines
at the National Institute of Tuberculosis and Respiratory
Diseases, New Delhi. DA is composed of the training set
(52 TB and 52 non-TB CXR images) and the independent
test set (26 TB and 26 non-TB CXR images). DB contains
100 training CXR images (50 TB and 50 non-TB) and 50 test
CXR images (25 TB and 25 non-TB). Note that all these four
datasets are annotated with image-level labels for binary
CXR image classification.

These datasets are too small to train deep neural net-
works, so recent research on CTD has been hindered al-
though deep learning has achieved numerous success sto-
ries in the computer vision community. On the other hand,
the existing datasets only have image-level annotations, and
thus we cannot train TB detectors with previous data. To
help radiologists make accurate diagnoses, we are expected
to detect the TB infection areas, not only an image-level
classification. Therefore, the lack of TB data has prevented
deep learning from bringing success to practical CTD sys-
tems that have the potential to save millions of TB patients
every year. In this paper, we build a large-scale dataset
with bounding box annotations for training deep neural
networks for simultaneous CXR image classification and TB
infection area detection. The presentation of this new dataset
is expected to benefit future research on CTD and promote
more practical CTD systems.

2.2 Computer-aided Tuberculosis Diagnosis

Owing to the lack of data, traditional CTD methods can-
not train deep neural networks. Thus, traditional methods
mainly use hand-crafted features and train binary classifiers
for CXR image classification. Jaeger et al. [5] first segmented
the lung region using a graph cut segmentation method [26].
Then, they extracted hand-crafted texture and shape fea-
tures from the lung region. Finally, they apply a binary clas-
sifier, i.e., support vector machine (SVM), to classify the CXR
image as normal or abnormal. Candemir et al. [10] adopted
image retrieval-based patient-specific adaptive lung models
to a nonrigid registration-driven robust lung segmentation
method, which would be helpful for traditional lung feature
extraction [5]. Chauhan et al. [6] implemented a MATLAB
toolbox, TB-Xpredict, which adopted Gist [27] and PHOG
[28] features for the discrimination between TB and non-
TB CXR images without requiring segmentation [29], [30].
Karargyris et al. [31] extracted shape features to describe
the overall geometrical characteristics of lungs and texture
features to represent image characteristics.

Instead of using hand-crafted features, Lopes et al. [9]
adopted the frozen convolutional neural networks pre-
trained on ImageNet [32] as the feature extractors for CXR
images. Then, they train SVM to classify the extracted
deep features. Hwang et al. [7] trained an AlexNet [33]
for binary classification (TB and non-TB) using a private
dataset. Other private datasets are also used in [34] for im-
age classification networks. However, our proposed large-
scale dataset, i.e., TBX11K, has been made publicly available
to promote research in this field. With our new dataset,
we propose a transformer-based CTD method, SymFormer,
for simultaneous CXR image classification and TB infection
area detection, which serves as a strong baseline for future
research on CTD by achieving state-of-the-art performance.

2.3 Vision Transformers in Medical Imaging

Transformer [35] is initially introduced in natural language
processing (NLP), and it has a good ability to capture
long-range dependencies. Pioneering works on adapting
transformers to vision tasks, such as ViT [36], DeiT [37], and
P2T [38], showed that transformer networks can surpass the
widely-used convolutional neural networks. Therefore, vi-
sion transformers attract increasing attention from the com-
puter vision community, including medical imaging. Vari-
ous efforts have been made to incorporate vision transform-
ers into medical image segmentation [39]–[43] and medical
image classification [44]–[48]. However, the adoption of
transformer-based techniques for medical image detection
lags behind that of segmentation and classification.

Most studies utilizing vision transformers for medical
image detection are primarily built on the detection trans-
former (DETR) framework [49]. The pioneering work in
this field is COTR [50], comprising a convolutional neu-
ral network for feature extraction, hybrid convolution-in-
transformer layers for feature encoding, transformer de-
coder layers for object querying, and a feed-forward net-
work for polyp detection. Mathai et al. [51] employed DETR
[49] to detect lymph nodes in T2 MRI scans, which can be
used to evaluate lymphoproliferative diseases. Li et al. [52]
proposed a Slice Attention Transformer (SATr) block to
model the long-range dependency among different com-
puted tomography (CT) slices, which can be plugged into
convolution-based models for universal lesion detection.
Please refer to recent survey papers [53]–[55] for a more
comprehensive review of vision transformers in medical
imaging. In this paper, we propose SymFormer for CTD
using CXR images. SymFormer conducts simultaneous CXR
image classification and TB infection area detection. It lever-
ages SymAttention to tackle the bilateral symmetry property
of CXR images, which is further promoted by SPE. With
SymAttention and SPE, SymFormer exhibits much better
performance than recent popular object detector baselines,
suggesting its superiority in CTD.

3 TBX11K DATASET

Deep neural networks are highly dependent on large
amounts of training data, while existing public TB datasets
are not large-scale as shown in Table 1. To address this issue,
we establish a comprehensive and large-scale dataset called
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Fig. 1. Age distributions for the entire TBX11K dataset and specifically
for TBX11K TB X-rays.
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Fig. 2. Gender distributions for the entire TBX11K dataset and specifi-
cally for TBX11K TB X-rays.

TBX11K, which enables the training of deep networks for
CTD. In this section, we first describe how we collect and
annotate the CXR data in §3.1. Next, we present the results
of a human study conducted by experienced radiologists in
§3.2. Finally, we discuss potential research topics that can be
explored using our TBX11K dataset in §3.3.

3.1 Data Collection and Annotation
To collect and annotate the data, we adhere to four primary
steps: i) establishing a taxonomy, ii) collecting CXR data, iii)
professional data annotation, and iv) dataset splitting. We
will introduce each of these steps in detail below.

3.1.1 Taxonomy Establishment
The current TB datasets only consist of two categories: TB
and non-TB, where non-TB refers to healthy cases. However,
in practice, abnormalities in CXR images that indicate TB, at-
electasis, cardiomegaly, effusion, infiltration, mass, nodule,
etc., have similar abnormal patterns such as blurry and ir-
regular lesions, which differ significantly from healthy CXR
that have almost clear patterns. Therefore, relying solely on
healthy CXR as the negative category leads to biases that
can cause large false positives in the model’s prediction
for clinical scenarios where there are many sick but non-TB
patients. To address this issue and promote the practical ap-
plication of CTD, we propose a new category, sick but non-
TB, in our dataset. Furthermore, differentiating between
active TB and latent TB is crucial in providing patients with
proper treatment. Active TB results from Mycobacterium TB
infection or reactivation of latent TB, while individuals with
latent TB are neither sick nor contagious. Therefore, we have
divided TB into two categories of active TB and latent TB
in our dataset. In light of the above analysis, the proposed
TBX11K dataset includes four categories: healthy, sick but
non-TB, active TB, and latent TB.

3.1.2 Data Collection
The collection of TB CXR data presents two main challenges:
i) The high privacy of CXR data, particularly TB CXR data,
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Fig. 3. Distribution of the sizes of TB bounding boxes in the TBX11K
dataset. Each bin represents a specific range of bounding box areas.
The left and right values of each bin correspond to its area range, and
the height of the bin represents the number of TB bounding boxes within
that range. It should be noted that the CXR images in TBX11K have a
resolution of about 3000× 3000.

making it almost impossible for individuals to access the
raw data without risking breaking the law; ii) The scarcity
of definitively tested TB CXR images, due to the complex
and lengthy process of examining Mycobacterium TB us-
ing the golden standard [11], [12], despite the millions of
TB patients worldwide. To address these challenges, we
collaborate with top hospitals in China to gather the CXR
data. Our resulting TBX11K dataset comprises 11,200 CXR
images, including 5,000 healthy cases, 5,000 sick but non-
TB cases, and 1,200 TB cases. Each CXR image corresponds
to a unique individual. Of the 1,200 TB CXR images, 924
are active TB cases, 212 are latent TB cases, 54 contain
both active and latent TB, and 10 are uncertain cases whose
TB types cannot currently be recognized. We include 5,000
sick but non-TB cases to cover a broad range of radio-
graph diseases that can appear in clinical scenarios. The
data providers have de-identified the data, and relevant
government institutions have exempted the dataset, making
it publicly available legally.

All CXR images are in a resolution of approximately
3000 × 3000. Each CXR image is accompanied by corre-
sponding age and gender information, providing compre-
hensive clinical clues for the diagnosis of TB. The age
distribution and gender distribution are presented in Fig. 1
and Fig. 2, respectively. From Fig. 1, it is evident that 60% of
the TB patients fall within the age range of 20 to 60 years.
Only a small percentage of young individuals (aged less
than 20) are infected with TB, specifically 3% of TB patients.
This finding is consistent with recent medical research [56]–
[58]. Fig. 2 illustrates that the majority of TB patients are
male, aligning with clinical observations that TB is more
prevalent in men than women globally [59], [60]. We have
annotated TB infection areas using bounding boxes (intro-
duced in §3.1.3), and the distribution of the sizes of these TB
bounding boxes is depicted in Fig. 3. As evident from the
figure, TB infection areas exhibit a wide range of sizes, man-
ifesting varying degrees of TB severity. Taken together with
the previous analyses on taxonomy, category distribution,
age distribution, gender distribution, and TB infection size
distribution, we can come to the conclusion that the new
TBX11K dataset is both representative of the general population
and consistent with real-world clinical scenarios.

3.1.3 Professional Data Annotation
Our dataset comprises CXR images that have undergone
rigorous testing using the golden standard, which provides
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TABLE 2
Split for the TBX11K dataset. “Active & Latent TB” refers to CXR
images with both active and latent TB; “Active TB” refers to CXR

images with only active TB; “Latent TB” refers to CXR images with only
latent TB; “Uncertain TB” refers to TB CXR images where the type of
TB infection cannot be recognized using current medical conditions.

Classes Train Val Test Total

Non-TB Healthy 3,000 800 1,200 5,000
Sick & Non-TB 3,000 800 1,200 5,000

TB

Active TB 473 157 294 924
Latent TB 104 36 72 212

Active & Latent TB 23 7 24 54
Uncertain TB 0 0 10 10

Total 6,600 1,800 2,800 11,200

image-level labels. However, while this approach enables
us to categorize a CXR image as indicative of TB if the
sputum of the corresponding patient shows manifestations
of the disease, it does not reveal the specific location or
extent of the TB in the CXR image. The ability to detect
these TB infection areas is crucial to enable radiologists
to make informed decisions. Currently, relying solely on
image-level predictions makes it difficult for the human
eye to identify TB infection areas, as evidenced by the
low accuracy of radiologists during clinical examinations
(see §3.2). By simultaneously providing image classification
and TB localization results, CTD systems have the potential
to enhance the accuracy and efficiency of radiologists in
making informed decisions.

To achieve our goal, our TBX11K dataset includes
bounding box annotations for TB infection areas in CXR
images. To the best of our knowledge, this is the first dataset
designed for TB infection area detection. These annotations
are carried out by experienced radiologists from top hospi-
tals. Specifically, each TB CXR image in the dataset is first
labeled by a radiologist with 5-10 years of experience in TB
diagnosis. Subsequently, another radiologist with over 10
years of experience in TB diagnosis reviews the box annota-
tions. The radiologists do not just label bounding boxes for
TB areas but also identify the type of TB (active or latent)
for each box. To ensure consistency, the labeled TB types are
double-checked against the image-level labels produced by
the golden standard. In the event of a mismatch, the CXR
image is placed in the unlabeled data for re-annotation,
and the annotators do not know which CXR image was
previously labeled incorrectly. If a CXR image is labeled
incorrectly twice, we inform the annotators of the gold
standard for that CXR image and request that they discuss
how to re-annotate it. This double-checked process ensures
that the annotated bounding boxes are highly reliable for
TB infection area detection. Additionally, non-TB CXR im-
ages are only labeled with image-level labels produced by
the golden standard. Examples of the TBX11K dataset are
shown in Fig. 6, and the distribution of TB bounding box
sizes is displayed in Fig. 3, indicating that most TB bounding
boxes are in the range of (3842, 9602].

3.1.4 Dataset Splitting
We have partitioned the data into three subsets: training,
validation, and test, following the split detailed in Table 2.

The ground truths for both the training and validation
sets have been made public, whereas the ground truths
for the test set remain confidential. This is because we
have launched an online challenge using the test data on
our website. To ensure a more representative dataset, we
have considered four distinct TB cases: i) CXR images with
active TB only, ii) CXR images with latent TB only, iii)
CXR images with both active and latent TB, and iv) CXR
images with uncertain TB type that cannot be recognized
under current medical conditions. For each TB case, we
have maintained a ratio of 3 : 1 : 2 for the number of TB
CXR images in the training, validation, and test sets. It is
worth noting that the uncertain TB CXR images have been
assigned to the test set, enabling researchers to evaluate
class-agnostic TB detection using these 10 uncertain CXR
images. We recommend that researchers train their models
on the training set, tune hyper-parameters on the validation
set, and report the model’s performance on the test set after
retraining using the union of the training and validation
sets. This approach follows scientific experiment settings
and is expected to yield reliable results.

3.2 Human Study by Radiologists
The human study involving radiologists is a critical compo-
nent in understanding the role of CTD in clinical settings.
We begin by randomly selecting 400 CXR images from the
test set of the new TBX11K dataset, which includes 140
healthy CXR images, 140 sick but non-TB CXR images, and
120 CXR images with TB. Of the 120 CXR images with TB,
63 show active TB, 41 show latent TB, 15 show both active
and latent TB, and 1 shows uncertain TB. Next, we invite an
experienced radiologist from a major hospital with over 10
years of work experience to label the CXR images according
to four image-level categories: healthy, sick but non-TB,
active TB, and latent TB. If a CXR image displays both active
and latent TB manifestations, the radiologist assigns both
labels. It is important to note that this radiologist is different
from those who labeled the original dataset.

The radiologist achieves an accuracy of only 68.7% when
compared to the ground truth produced by the golden
standard. If we ignore the differentiation between active
and latent TB, the accuracy improves to 84.8%, but distin-
guishing between the types of TB is crucial for effective
clinical treatment. This low performance highlights one
of the major challenges in TB diagnosis, treatment, and
prevention. Unlike natural color images, CXR images are
grayscale and often have fuzzy and blurry patterns, making
accurate recognition challenging. Unfortunately, diagnosing
TB with the golden standard can take several months in a
BSL-3 laboratory [11], [12], which is not feasible in many
parts of the world. The challenge in TB diagnosis leads to
TB becoming the second most common infectious disease
worldwide after HIV. However, we will show in our upcom-
ing study that deep-learning-based CTD models trained on
the proposed TBX11K dataset can significantly outperform
even experienced radiologists, offering hope for improved
TB diagnosis and treatment.

3.3 Potential Research Topics
Moving forward, we discuss some potential research topics
related to CTD using our newly developed TBX11K dataset.

https://codalab.lisn.upsaclay.fr/competitions/7916
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Simultaneous classification and detection. Our TBX11K
dataset opens up new possibilities for conducting research
on CTD, including CXR image classification and TB infec-
tion area detection. Our test set includes a broad range of
health and non-TB sick data, enabling the simulation of
clinical data distribution for evaluating CTD systems. We
believe that the development of simultaneous CXR image
classification and TB infection area detection systems would
be a challenging and fascinating research topic, with poten-
tial applications for assisting radiologists in TB diagnosis.
Deploying such systems could ultimately improve the accu-
racy and efficiency of TB diagnosis and treatment.

Imbalanced data distribution. In addition to the chal-
lenge of simultaneous detection and image classification,
our TBX11K dataset also presents an imbalanced data dis-
tribution across different categories. However, we believe
that this data imbalance is reflective of real-world clinical
scenarios. When patients undergo chest examinations, they
may be experiencing discomfort or illness, increasing the
likelihood of getting sick, and our dataset captures this
reality with only 44.6% of takers being healthy. TB is just
one of many possible chest diseases, and our dataset reflects
this reality with only 10.7% of takers being infected with
TB, while 44.6% are sick but non-TB. Latent TB can result
from two scenarios: exposure to active TB and conversion
from active TB after treatment. Most cases of latent TB are
caused by exposure to active TB. However, individuals with
latent TB are not sick or contagious and are unlikely to seek
medical attention, resulting in a higher number of active TB
cases in our dataset than latent TB cases. This data imbal-
ance presents a challenge for future CTD methods, which
must be designed to overcome this problem in practice. For
example, methods for training models on the imbalanced
TBX11K training set will need to be developed to improve
the accuracy of TB diagnosis.

Incremental learning with private data. Incremental
learning is a machine learning technique that involves up-
dating a model’s parameters with new data as it becomes
available, without requiring the model to be retrained from
scratch. Given the high privacy concerns surrounding TB
CXR data, researchers may possess private data that cannot
be released. In such cases, it may be beneficial to use a
model pre-trained on the TBX11K dataset as the base model.
Researchers can then leverage incremental learning to fine-
tune the pre-trained model using their private data, thereby
enhancing the model’s capacity for accurate CTD. Hence,
investigating the potential of incremental learning for CTD
using the newly developed TBX11K dataset would also be a
crucial research direction.

4 OUR SYMFORMER FRAMEWORK

In this section, we first present an overview of our Sym-
Former framework in §4.1. Then, we describe our Symmet-
ric Abnormity Search (SAS) method in §4.2. SAS consists of
two components: Symmetric Positional Encoding (SPE) in
§4.2.1, and Symmetric Search Attention (SymAttention) in
§4.2.2. Next, we introduce the TB diagnosis heads for Sym-
Former in §4.3. Finally, we present the two-stage training
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32 32
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CXR Classification Head
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Fig. 4. Illustration of the proposed SymFormer framework. FPN [61]
is applied to generate the feature pyramid.

diagram for simultaneous CXR image classification and TB
infection area detection in §4.4.

4.1 Overview

We illustrate the overall pipeline of SymFormer in Fig. 4.
SymFormer comprises three parts: feature extraction, sym-
metric abnormity search, and TB diagnosis heads. We will
elaborate on each part below.

Feature extraction. For the sake of convenience, we take
ResNets [62] as an example backbone network for feature
extraction due to its generality acknowledged by the com-
munity. When given a CXR image as input, the backbone
network outputs features in four stages, which are scaled
down by factors of 1/4, 1/8, 1/16, and 1/32, respectively,
in comparison to the input size. As the sizes and shapes
of TB infection areas vary widely, it is crucial to capture
multi-scale features from the backbone network. In order
to achieve this, a feature pyramid network (FPN) [61] is
applied upon the backbone network, which generates a
feature pyramid, i.e., feature maps at different scales. We
denote the feature pyramid as F = {F1,F2,F3,F4} w.r.t.
Fi ∈ RC× H

2i+1 × W
2i+1 (i ∈ {1, 2, 3, 4}), in which C is the

feature dimension and H and W are the height and width
of the input CXR image, respectively. The feature pyramid is
effective at enabling TB infection detection across different
feature levels.

Symmetric abnormity search. The SAS module serves to
enhance the extracted feature pyramid F. To achieve this, an
SAS module is incorporated after each side output of FPN
[61] to process each feature map Fi in the feature pyramid
F. The enhanced feature pyramid is expressed as F̂ =

{F̂1, F̂2, F̂3, F̂4} w.r.t. F̂i ∈ RC× H
2i+1 × W

2i+1 (i ∈ {1, 2, 3, 4}).
The SAS modules at various side outputs share the same
weights to reduce the number of network parameters. Ac-
cording to the bilateral symmetry property, the bilaterally
symmetric regions in a normal CXR image should look
similar or identical. The SAS module leverages this insight
by searching for symmetric positions in each position of the
feature map to determine if it is normal. The SAS module
consists of three components: SPE, SymAttention, and a
feed-forward network. While the CXR image may not be
strictly symmetric, the SPE is designed to recalibrate the fea-
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tures, which then benefits the SymAttention for symmetric-
search-based feature enhancement.

TB diagnosis heads. We connect two types of TB diagno-
sis heads to the feature pyramid F̂, which is enhanced by
the SAS module, for performing TB infection area detection
and CXR image classification, respectively. Each feature map
in the feature pyramid F̂ is fed into the detection head,
and each detected bounding box is expected to cover a TB
infection area. However, there is a risk of introducing false
positives for non-TB CXR images during TB infection area
detection, which leads to unnecessary costs for radiologists
to check these false positives for clinical diagnosis. To ad-
dress this issue, we feed the feature map F̂4 at the top level
of the enhanced feature pyramid into a classification head
to determine whether a CXR image contains TB or not. If
a CXR image is classified as TB, radiologists can further
examine the detected TB infection areas for a more accurate
and detailed clinical diagnosis. If a CXR image is classified
as non-TB, the detected areas need not be checked further
by radiologists.

4.2 Symmetric Abnormity Search

Bilateral symmetry is a property of CXR images where the
structures on the left and right sides of the chest appear
similar or identical. In other words, if a line is drawn down
the center of the CXR image, the structures on either side of
the line should be approximately the same size and shape.
This property plays a crucial role in the interpretation of
CXR images since it enables radiologists and clinicians to
identify asymmetries or abnormalities in the lung fields. For
example, the presence of a mass or consolidation on one
side of the lung but not the other could indicate a problem
in that area. However, it is worth noting that perfect bilateral
symmetry is not always present in normal CXR images,
depending on the patient’s pose and position relative to the
X-ray machine when the CXR image is taken.

Our proposed method, SAS, leverages the bilateral sym-
metry property to enhance the feature representations of
CXR images. As mentioned above, the lungs in CXR im-
ages may not be strictly symmetric. To account for this,
SAS first incorporates SPE for feature recalibration. This
recalibrated feature map is then used by SymAttention to
search the symmetric adjacent area of each spatial position
in the feature map, where the symmetric adjacent area refers
to the adjacent area of the bilaterally symmetric position
for a given position. SymAttention aggregates features in
the symmetric adjacent area in an adaptive way through
attention. The adjacent area is also determined in a learning
way. By forcing each spatial position to look at the symmet-
ric adjacent area, as suggested by the bilateral symmetry
property, we can learn discriminative features for the CXR
image for CTD.

4.2.1 Symmetric Positional Encoding
To incorporate positional information into self-attention
computations for a feature map, we must add positional
encoding to the feature map. There are two types of posi-
tional encoding: absolute positional encoding and relative
positional encoding [35], [36]. Our method, called SPE, is

based on absolute positional encoding, and our experiments
indicate that relative positional encoding is inferior to our
SPE, as shown in §6.3. The widely-used absolute positional
encoding [35], [36] employs sine and cosine functions of
different frequencies:

P[pos, 2j] = sin(pos/10000
2j
C ),

P[pos, 2j + 1] = cos(pos/10000
2j
C ),

(1)

where pos denotes the spatial position and j indexes the
feature dimension. For each input feature map Fi from the
feature pyramid F, we use Eq. 1 to calculate the correspond-
ing positional encoding Pi. Pi has the same shape as Fi so
that Pi and Fi can be summed.

As mentioned earlier, CXR images may not strictly ad-
here to the bilateral symmetry property as they can have
slight rotations and translations. The proposed SPE is de-
signed to tackle this issue by feature recalibration. SPE first
splits the positional encoding Pi into two sides, i.e., Pleft

i

and P
right
i , by drawing a line down the center of Pi. Then,

we transfer P
right
i to the left side using spatial transformer

networks (STN) [63] and horizontal flipping. Finally, we
concatenate the transformed left-side positional encoding
and P

right
i along the x dimension to form the output Psym

i .
This process can be formulated as follows:

Ti = STN(Fi; Θ)

Ptrans
i = Flipx(TΘ(P

right
i ;Ti)),

P
sym
i = Concatx(P

trans
i ,P

right
i ),

(2)

in which Θ is the weights of STN; Ti is the affine trans-
formation matrix; TΘ indicates the affine transformation;
Flipx represents horizontal flipping; and Concatx stands
for concatenation along the x dimension. In Eq. 2, Pright

i can
be replaced with P

left
i by swapping the order of the inputs

of Concatx. However, our experiments in §6.3 show that
P

right
i performs slightly better than P

left
i . For each input Fi

(i ∈ {1, 2, 3, 4}), we compute the corresponding P
sym
i using

Eq. 2. Using the SPE P
sym
i , we recalibrate the input feature

map through
Frecalib

i = Fi +P
sym
i . (3)

The output Frecalib
i will facilitate the calculation of the subse-

quent SymAttention.

Micro designs of STN. The spatial transformation in
Eq. 2 is conditional on both the input feature and positional
encoding. We feed the input feature Fi into a small network
of STN to predict the affine transformation matrix Ti, which
is then employed for the affine transformation of the one-
side positional encoding P

right
i . The small network includes

two alternating max-pooling and Conv-ReLU layers. Then, a
flattening operation is carried out on the spatial dimension,
followed by a multilayer perceptron (MLP) to predict the
affine matrix. We initialize the MLP to ensure that the affine
transformation with the initial affine matrix is equivalent to
an identical mapping.

4.2.2 Symmetric Search Attention
Self-attention has gained popularity in various fields [64]–
[67] due to its ability to learn relationships among elements
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within a sequence or image [35], [36]. In medical image
analysis, self-attention has been applied to identify relevant
features in images and enhance disease detection. However,
classical self-attention performs global relationship model-
ing by calculating attention weights for each reference loca-
tion, which fuses features from all locations. This approach
may not be optimal for CTD with CXR images. Specifically,
natural images can be captured in various scenarios and
contain various objects and elements, so global relationship
modeling is beneficial for the understanding of the entire
scene. However, CXR images only depict the human chest
in a single scenario, and the difference among various
CXR images is often limited to the presence of elusive
abnormity regions. Therefore, global relationship modeling
may be redundant for CXR images, limiting the capacity of
self-attention to learn relevant relationships for enhancing
feature representation. This is because it is challenging for a
neural network to automatically identify a few relevant loca-
tions out of thousands of redundant locations. For instance,
in our experiments, we observe that the DETR detection
framework [49] can not converge when used to discriminate
indistinguishable TB features in CTD.

To tackle this challenge, we propose SymAttention,
which leverages the bilateral symmetry property to aid self-
attention in identifying relevant locations in CXR images.
As previously mentioned, radiologists can diagnose TB by
comparing the bilaterally symmetric locations of the two
sides of the lungs. Consequently, the relevant locations
for each reference location in CXR images are the bilater-
ally symmetric locations. Inspired by this, SymAttention
searches for features in a symmetrical pattern across the
left and right lungs, allowing each reference location only
attends to the locations around the bilaterally symmetric
location of the reference location. Given the feature map
Frecalib

i , we first select a small set of key sampling locations,
following Deformable DETR [68]. Let K denote the number
of selected locations, and M denote the number of heads
in the self-attention calculation. The coordinate shifts of the
selected locations can be learned by

∆px
i = Wpos

x Frecalib
i , ∆py

i = Wpos
y Frecalib

i , (4)

in which W
pos
x ,W

pos
y ∈ R(M×K)×C are trainable parameter

matrices. The attention Ai and value Fv
i are simply calcu-

lated using

Ai = Softmax(Reshape(WattFrecalib
i )),

Fv
i = WvalueFrecalib

i

(5)

where Watt ∈ R(M×K)×C , Wvalue ∈ RC×C are trainable
parameter matrices and the softmax function is performed
along the dimension of K . Then, we reshape Fv

i like

Fv
i ∈ RC× H

2i+1 × W
2i+1 → Fv

i ∈ RM× C
M × H

2i+1 × W
2i+1 . (6)

Next, SymAttention can be formulated as

Fatt
i = ConcatMm=1(

K∑
k=1

(Ai[m, k] · Fv
i [m, :,py

i +∆py
i [m, k],

W

2i+1
− (px

i +∆px
i [m, k]) + 1

:::::::::::::::::::::::::

])),

(7)

in which ConcatMm=1 means to concatenate all the results
generated by setting m from 1 to M . The term with the

:::::
wavy

::::::::
underline projects the sampled locations onto the bilaterally
symmetric locations by taking the vertical centerline as the
line of symmetry, which is the core of the proposed SymAt-
tention. Finally, to ease optimization, a residual connection
is connected, followed by an MLP:

F̂att
i = WprojFatt

i + Fi, F̂i = MLP(F̂att
i ) + F̂att

i , (8)

where we have Wproj ∈ RC×C and F̂i is the enhanced
output as in §4.1.

In Eq. 4 - Eq. 8, each reference location attends to a
small set of key sampling locations around the bilaterally
symmetric location of the reference location, rather than
just the symmetric location. The key sampling locations
are automatically set in a learning way. This ensures the
receptive field when comparing the appearance of the left
and right sides of the lungs. In our experiments, we have
observed that the learned coordinate shifts ∆px

i usually fall
within a range of 10% of the width of the corresponding fea-
ture map, without any constraints. Consequently, for points
situated far from the vertical centerline, they will search
points on the symmetric side for feature aggregation. For
points in proximity to the vertical centerline, they usually
do not correspond to lung regions (see Fig. 6), and this
does not impact our assumption of symmetric searching
for CTD as we focus on detecting TB in lung regions. In
this paper, we empirically set M = 8 and K = 4. Suppose
N = H

2i+1 × W
2i+1 , and the computational complexity can be

expressed as O(NC2). Thus, SymAttention is very efficient
and flexible for application to the feature pyramid F.

4.3 TB Diagnosis Heads
In §4.1, we mention that there are two TB diagnosis heads:
the TB infection area detection head and the CXR image
classification head. In this section, we introduce them in
detail. The detection head is based on RetinaNet [69], a well-
known one-stage object detector, consisting of two branches
for bounding box classification and location regression.
In contrast to object detection for natural images, where
each bounding box covers an object, each bounding box
in our system is designed to cover a TB infection area.
The detection head learns to detect TB with two categories:
active TB and latent TB. During clinical TB screening, most
CXR cases do not have TB infections, making it easy for
the detection head to introduce false positives. To tackle
this challenge, we add a CXR image classification head
to conduct simultaneous CXR image classification and TB
infection area detection. We discard the detected TB areas
if a CXR image is classified as non-TB. For simplicity, we
stack several convolutions with pooling operations for the
classification head. There are five sequential convolution
layers, each with 512 output channels and ReLU activation.
We then adopt global average pooling to obtain a global
feature vector, followed by a fully connected layer with 3
output neurons for classification into three categories: healthy,
sick but non-TB, and TB.

4.4 Two-stage Training Diagram
Our SymFormer framework consists of two heads designed
for CXR image classification and TB infection area detection,
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respectively. In clinical settings, the number of non-TB cases
significantly outweighs the number of TB cases. Directly
training the infection area detection head with non-TB cases
would result in an excessive number of pure background
supervisions. Therefore, simultaneous training of the clas-
sification and detection heads is suboptimal. Additionally,
CXR images solely depict structures and organs in the
chest, unlike natural images that have complex and diverse
backgrounds. If we first train the backbone network and
the classification head, the backbone network for feature
extraction would become overfitted and would not gener-
alize well to infection area detection. Furthermore, image
classification mainly focuses on global features, while in-
fection area detection requires fine-grained features for TB
area localization. As a result, training image classification
first is also suboptimal. Our proposed approach entails
training the backbone network and the infection area de-
tection head initially using only TB CXR images. Then, we
employ all CXR images to train the classification head by
freezing the backbone network and the detection head. This
training strategy benefits from more specific bounding box
annotations provided by the detection annotations, which
mitigates the risk of overfitting. The fine-grained features
learned through the infection area detection can also be
easily transferred to CXR image classification.

5 EXPERIMENTAL SETUP

In this section, we first elaborate on the implementation
details for the proposed SymFormer in §5.1. Subsequently,
we introduce several baseline models for CTD in §5.2 and
discuss the evaluation metrics used for CTD in §5.3.

5.1 Implementation Details

Our implementation of SymFormer is done using PyTorch
[70] and the open-source mmdetection framework [71].
The training of the first stage uses TB CXR images in the
TBX11K trainval (train + val) set, while the training
of the second stage not only uses all TBX11K trainval
CXR images but also the random half of the MC [25] and
Shenzhen [25] datasets as well as the training sets of the
DA [6] and DB [6] datasets. The other half of the MC [25]
and Shenzhen [25] datasets as well as the test sets of the
TBX11K, DA [6] and DB [6] datasets are used to evaluate
the performance of CXR image classification. We set the
number of FPN feature channels, denoted as C , to 256,
consistent with RetinaNet [69]. Other settings also follow
those in RetinaNet. For the training of the first stage, we
use a batch size of 8 and train for 50 epochs for Deformable
DETR-based models [68], while 24 epochs for other models.
For the training of the second stage, we utilize a batch size
of 8 and train for 12 epochs across all models. We adopt the
AdamW optimizer for Deformable DETR-based models and
the SGD optimizer for other models. To augment the data,
we use random flipping. We resize both the CXR images
used for training and testing to 512 × 512. All experiments
are conducted using 2 TITAN XP GPUs. Please refer to our
code for more details.

5.2 Baseline Models

As discussed in §4.1, incorporating an image classification
head can significantly reduce the false positives of detection
in clinical TB screening. However, existing object detectors
do not consider background images and often disregard
images without bounding-box objects [69], [72]–[75]. Using
these detectors directly for CTD leads to numerous false
positives due to the large number of non-TB CXR images
in clinical practice. To address this issue, we introduce
a classification head to enable simultaneous CXR image
classification and TB infection area detection, where the CXR
image classification results are used to filter out the false
positives of detection.

To achieve this, we reformulate several well-known ob-
ject detectors, including SSD [72], RetinaNet [69], Faster
R-CNN [74], FCOS [73], and Deformable DETR [68] for
simultaneous CXR image classification and TB infection area
detection. Specifically, we add the same image classification
head as used in our SymFormer to these detectors, after
the final layer of their backbone networks, e.g., conv5 3 for
VGGNet-16 [76] and res5c for ResNet-50 [62]. The image
classification head learns to classify CXR images into three
categories: healthy, sick but non-TB, and TB, while the TB
detection head learns to detect TB with two categories:
active TB and latent TB. The training of existing detectors
follows the two-stage training diagram described in §4.4.

5.3 Evaluation Metrics

CXR image classification. We continue by introducing
the evaluation metrics for the CTD task. In CXR image
classification, the goal is to classify each CXR image into
one of three categories: healthy, sick but non-TB, and TB.
To assess the classification results, we utilize the following
evaluation metrics:

• Accuracy: This metric measures the percentage of
CXR images that are correctly classified across all
three categories.

• Area Under Curve (AUC): AUC computes the area
under the Receiver Operating Characteristic (ROC)
curve. The ROC curve plots the true positive rate
against the false positive rate for the TB class.

• Sensitivity: Sensitivity quantifies the percentage of
TB cases that are accurately identified as TB. It repre-
sents the recall for the TB class.

• Specificity: Specificity determines the percentage of
non-TB cases that are correctly identified as non-TB,
encompassing both the healthy and sick but non-TB
classes. It represents the recall for the non-TB class.

• Average Precision (AP): AP calculates the precision
for each class and takes the average across all classes.
It provides an overall measure of precision.

• Average Recall (AR): AR computes the recall for each
class and averages the values across all classes. It
provides an overall measure of recall.

• Confusion matrix: The confusion matrix reports the
number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN). For a
better view, we report the ratios of TP, TN, FP, and
FN in relation to the total number of test CXR images.
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TABLE 3
CXR image classification results (%) in terms of accuracy, AUC, sensitivity, specificity, AP, and AR on the TBX11K test data. The

“Backbone” column indicates the specific backbone network used.

Methods Backbones Accuracy AUC (TB) Sensitivity Specificity Ave. Prec. (AP) Ave. Rec. (AR)

SSD [72] VGGNet-16 84.7 93.0 78.1 89.4 82.1 83.8
RetinaNet [69] ResNet-50 w/ FPN 87.4 91.8 81.6 89.8 84.8 86.8
Faster R-CNN [74] ResNet-50 w/ FPN 89.7 93.6 91.2 89.9 87.7 90.5
FCOS [73] ResNet-50 w/ FPN 88.9 92.4 87.3 89.9 86.6 89.2
Deformable DETR [68] ResNet-50 w/ FPN 91.3 97.6 89.2 95.3 89.8 91.0

SymFormer w/ Deformable DETR ResNet-50 w/ FPN 94.3 98.5 87.3 97.3 93.2 93.2
SymFormer w/ RetinaNet ResNet-50 w/ FPN 94.5 98.9 91.0 96.8 93.3 94.0
SymFormer w/ RetinaNet P2T-Small w/ FPN 94.6 99.1 92.1 96.7 93.4 94.2

TABLE 4
CXR image classification results (%) in terms of the F1 score and confusion matrix on the TBX11K test data, as well as the number of
FLOPs, the number of parameters, and FPS of each model. “#Total” denotes the total number of test CXR images. We test FPS on a single

TITAN XP GPU. For the ground truths, the ratio of positives (TP + FN) is 19.6%, and the ratio of negatives (TN + FP) is 80.4%.

Methods Backbones #FLOPs #Params FPS F1 score ↑ TP/#Total ↑ TN/#Total ↑ FP/#Total ↓ FN/#Total ↓

SSD [72] VGGNet-16 90.58 38.69 32.9 70.5 15.3 71.9 8.5 4.3
RetinaNet [69] ResNet-50 w/ FPN 55.41 48.97 35.3 73.1 16.0 72.2 8.2 3.6
Faster R-CNN [74] ResNet-50 w/ FPN 66.27 53.98 30.3 78.5 17.9 72.3 8.1 1.7
FCOS [73] ResNet-50 w/ FPN 53.33 44.69 39.9 76.3 17.1 72.3 8.1 2.5
Deformable DETR [68] ResNet-50 w/ FPN 54.07 52.67 23.0 85.6 17.5 76.6 3.8 2.1

SymFormer w/ Deformable DETR ResNet-50 w/ FPN 54.08 52.69 22.5 87.9 17.1 78.2 2.2 2.5
SymFormer w/ RetinaNet ResNet-50 w/ FPN 59.14 50.03 24.3 89.0 17.8 77.8 2.6 1.8
SymFormer w/ RetinaNet P2T-Small w/ FPN 55.46 45.10 17.9 89.6 18.1 77.7 2.7 1.5

• F1 score: This metric is the harmonic mean of preci-
sion and recall, thus symmetrically representing both
in a single value. It can be calculated by 2TP/(2TP +
FP + FN).

These metrics enable the evaluation of the CXR image
classification quality from various perspectives.

TB infection area detection. For the evaluation of TB
detection, we utilize the average precision of the bounding
box metric (APbb) proposed by the COCO benchmark [77].
APbb is widely used as the primary detection metric in the
vision community [38], [69], [73], [78]. The default APbb is
computed by averaging over IoU (intersection-over-union)
thresholds ranging from 0.5 to 0.95 with a step size of 0.05.
Additionally, we report APbb

50 , which represents APbb at an
IoU threshold of 0.5. To provide insights into the detection
performance for different types of TB, we present evaluation
results separately for active TB and latent TB, excluding
uncertain TB CXR images. We also report category-agnostic
TB detection results, where the TB categories are disre-
garded, to describe the detection of all TB areas. In this case,
uncertain TB CXR images are included. Furthermore, we
introduce two evaluation modes: i) utilizing all CXR images
in the TBX11K test set, and ii) considering only TB CXR
images in the TBX11K test set. By employing these metrics,
we can comprehensively analyze the performance of CTD
systems from various useful perspectives.

6 EXPERIMENTAL RESULTS

In this section, we present the results for CXR image clas-
sification in §6.1, followed by the results for TB infection
area detection in §6.2. Subsequently, we visualize detection

results and the learned deep features in §6.4. Lastly, we con-
duct ablation studies in §6.3 to gain a better understanding
of the proposed SymFormer.

6.1 CXR Image Classification
We summarize the evaluation results for CXR image clas-
sification on the TBX11K test set in Table 3 and Table 4.
All methods adopt pretraining models from ImageNet [32]
for initialization. We report the results of the proposed
SymFormer integrated with RetinaNet [69] and Deformable
DETR [68] as the base methods. As can be observed from
both Table 3 and Table 4, incorporating SymFormer into
RetinaNet [69] and Deformable DETR [68] leads to sig-
nificant performance improvements for RetinaNet and De-
formable DETR, respectively. SymFormer with Deformable
DETR achieves a specificity of 97.3%, indicating that 2.7
out of 100 non-TB CXR images will be misclassified as TB.
The default model we employ is SymFormer with RetinaNet,
which exhibits slightly lower performance than SymFormer
with Deformable DETR but outperforms the latter by a
significant margin in object detection, as demonstrated in
§6.2. Furthermore, in terms of accuracy, all methods greatly
outperform radiologists who achieve an accuracy of 84.8%
as in §3.2. This emphasizes the promising potential of deep-
learning-based CTD as a research field.

In Table 3, we observe that the difference between Sym-
Former and the baseline models in terms of sensitivity is
much smaller than the difference in terms of specificity.
Specially, Faster R-CNN [74] achieves an impressively high
sensitivity rate of 91.2%, but it lags significantly behind
SymFormer in other performance metrics. To explain this
phenomenon, we refer to Table 4 and discover that the
baseline models tend to make more positive predictions (TP
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TABLE 5
CXR image classification results (%) in terms of accuracy, AUC, sensitivity, specificity, AP, and AR on the DA+DB test data [6].

Methods Backbones Accuracy AUC (TB) Sensitivity Specificity Ave. Prec. (AP) Ave. Rec. (AR)

SSD [72] VGGNet-16 51.0 53.8 100.0 1.9 75.3 51.0
RetinaNet [69] ResNet-50 w/ FPN 50.0 50.0 100.0 0.0 25.0 50.0
Faster R-CNN [74] ResNet-50 w/ FPN 50.0 51.9 100.0 0.0 25.0 50.0
FCOS [73] ResNet-50 w/ FPN 50.0 52.1 100.0 0.0 25.0 50.0
Deformable DETR [68] ResNet-50 w/ FPN 68.6 69.7 84.3 52.9 70.7 68.6

SymFormer w/ Deformable DETR ResNet-50 w/ FPN 82.4 78.4 86.3 78.4 82.6 82.4
SymFormer w/ RetinaNet ResNet-50 w/ FPN 78.4 74.7 90.2 66.7 80.1 78.4
SymFormer w/ RetinaNet P2T-Small w/ FPN 84.3 89.4 84.3 84.3 84.3 84.3

TABLE 6
CXR image classification results (%) in terms of accuracy, AUC, sensitivity, specificity, AP, and AR on the MC+Shenzhen test data [25].

Methods Backbones Accuracy AUC (TB) Sensitivity Specificity Ave. Prec. (AP) Ave. Rec. (AR)

SSD [72] VGGNet-16 50.8 50.4 100.0 3.4 74.9 51.7
RetinaNet [69] ResNet-50 w/ FPN 49.3 49.7 100.0 0.5 74.6 50.3
Faster R-CNN [74] ResNet-50 w/ FPN 49.0 49.5 100.0 0.0 24.5 50.0
FCOS [73] ResNet-50 w/ FPN 48.8 49.0 99.5 0.0 24.4 49.7
Deformable DETR [68] ResNet-50 w/ FPN 81.3 83.5 92.9 70.1 83.0 81.5

SymFormer w/ Deformable DETR ResNet-50 w/ FPN 82.0 84.7 89.3 75.0 82.7 82.1
SymFormer w/ RetinaNet ResNet-50 w/ FPN 82.8 86.3 91.8 74.0 83.8 82.9
SymFormer w/ RetinaNet P2T-Small w/ FPN 85.8 87.4 93.4 78.4 86.6 85.9

TABLE 7
TB infection area detection results (%) on our TBX11K test set. The “Test Data” column specifies whether the evaluation was performed using

all CXR images in the test set or only TB CXR images in the test set. The “Backbone” column indicates the specific backbone network used.

Methods Test Data Backbones Category-agnostic TB Active TB Latent TB

APbb
50 APbb APbb

50 APbb APbb
50 APbb

SSD [72]

ALL

VGGNet-16 52.3 22.6 50.5 22.8 8.1 3.2
RetinaNet [69] ResNet-50 w/ FPN 52.1 22.2 45.4 19.6 6.2 2.4
Faster R-CNN [74] ResNet-50 w/ FPN 57.3 22.7 53.3 21.9 9.6 2.9
FCOS [73] ResNet-50 w/ FPN 46.6 18.9 40.3 16.8 6.2 2.1
Deformable DETR [68] ResNet-50 w/ FPN 51.7 22.0 48.9 21.2 7.1 1.9
SymFormer w/ Deformable DETR ResNet-50 w/ FPN 57.0 23.3 52.1 22.7 7.1 2.0
SymFormer w/ RetinaNet ResNet-50 w/ FPN 68.0 29.5 62.0 27.3 13.3 4.4
SymFormer w/ RetinaNet P2T-Small w/ FPN 70.4 30.0 63.6 26.9 11.4 4.3

SSD [72]

Only TB

VGGNet-16 68.3 28.7 63.7 28.0 10.7 4.0
RetinaNet [69] ResNet-50 w/ FPN 69.4 28.3 61.5 25.3 10.2 4.1
Faster R-CNN [74] ResNet-50 w/ FPN 63.4 24.6 58.7 23.7 9.6 2.8
FCOS [73] ResNet-50 w/ FPN 56.3 22.5 47.9 19.8 7.4 2.4
Deformable DETR [68] ResNet-50 w/ FPN 57.4 24.2 54.5 23.5 7.6 2.3
SymFormer w/ Deformable DETR ResNet-50 w/ FPN 60.8 24.5 55.2 23.8 9.2 2.6
SymFormer w/ RetinaNet ResNet-50 w/ FPN 73.4 31.5 67.1 29.2 14.7 4.8
SymFormer w/ RetinaNet P2T-Small w/ FPN 75.7 32.1 68.9 28.9 13.0 4.7

+ FP) and fewer negative predictions (TN + FN). In simpler
terms, the baseline models are inclined to classify a test CXR
image as positive, potentially due to their limited ability to
learn high-quality TB-related features. When we evaluate
all models on other public datasets without retraining, as
shown in Table 5 and Table 6, we can see that baseline mod-
els even achieve a sensitivity rate of 100.0% and a specificity
rate of 0. This further confirms our hypothesis that baseline
models tend to classify CXR images as positive. Considering
this perspective, the F1 score in Table 4 provides a better
representation of a model’s overall performance, as it sym-
metrically combines precision and recall.

In Table 4, we also report the number of Floating-Point
Operations (FLOPs), the number of parameters, and Frames
Per Second (FPS) for each model. From the comparison

between the original and SymFormer-enhanced Deformable
DETR [68], we can see that SymFormer exhibits simi-
lar FLOPs, parameters, and running speed as Deformable
DETR. This is straightforward as SymFormer only intro-
duces negligible computations to Deformable DETR. When
integrated with RetinaNet [69] using the ResNet-50 [62]
backbone, SymFormer achieves 24.3 fps, making it a prac-
tical choice for deployment in real-world scenarios. If ad-
ditional computational resources are available, SymFormer
can also utilize P2T-Small [38] as the backbone, offering
enhanced diagnostic performance and a speed of 17.9 fps.

In addition, we assess CXR image classification on pub-
lic datasets using the above-trained models without fine-
tuning. The results are presented in Table 5 for DA+DB
test data [6] and Table 6 for MC+Shenzhen test data [25].
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Fig. 5. Error analyses of category-agnostic TB area detection using baseline models and SymFormer w/ RetinaNet. The first row is evaluated
using all CXR images, while the second row only uses TB CXR images. C50/C75: PR curves under IoU thresholds of 0.5/0.75. Loc: the PR curve
under the IoU threshold of 0.1. BG: removing background false positives. FN: removing other errors caused by undetected targets (false negatives).
SymFormer largely outperforms other methods in all metrics, e.g., obtaining a remarkable 99% BG score when only using TB CXR images.

Notably, SSD [72], RetinaNet [69], Faster R-CNN [74], and
FCOS [73] achieve a sensitivity rate of approximately 100.0%
and a specificity rate of around 0. As discussed earlier,
this suggests that baseline models struggle to learn robust
feature representations for CTD, often misclassifying test
CXR images as TB cases. Deformable DETR [68] demon-
strates a degree of generalization to public datasets but falls
short in comparison to the proposed SymFormer. The strong
performance of SymFormer underscores its exceptional gen-
eralization capability.

6.2 TB Infection Area Detection

We proceed by presenting the results for TB infection area
detection. As discussed in §5.3, we report the performance
for both the entire TBX11K test set and a subset consisting
only of TB CXR images. Evaluating the performance using
only TB CXR images allows for precise detection analysis
since non-TB CXR images do not contain target TB infection
areas. Conversely, evaluating using all CXR images incorpo-
rates the influence of false positives in non-TB CXR images.
To ensure accurate evaluation using all CXR images, we
discard all predicted boxes in CXR images that are classified
as non-TB by the CXR image classification head. However,
it is important to note that this filtering process is not
applicable when evaluating using only TB CXR images.

The results for TB infection area detection are presented
in Table 7. It is evident that both SymFormer with De-
formable DETR and SymFormer with RetinaNet demon-
strate significant improvements over their respective base
methods, Deformable DETR [68] and RetinaNet [69]. In-
terestingly, SymFormer with RetinaNet outperforms Sym-
Former with Deformable DETR by a considerable margin,
indicating that SymFormer is better suited for integration
with the RetinaNet framework. As a result, we select Sym-
Former with RetinaNet as our default model for CTD. It
is worth noting that all methods struggle with accurately
detecting latent TB areas. However, the evaluation results
for category-agnostic TB are better than those for active TB,
indicating that many latent TB targets are correctly located
but mistakenly classified as active TB. We attribute this to

TABLE 8
Ablation study for TB infection area detection on our TBX11K

validation set. We only use TB CXR images to evaluate
category-agnostic TB area detection. The “Symmetry of SPE” column
indicates whether SPE transfers the right side of positional encoding to

the left side, or vice versa. APE: absolute positional encoding; RPE:
relative positional encoding.

Attention Positional Encoding Symmetry of SPE APbb
50 APbb

No No - 72.7 31.0
Vanilla APE - 73.4 30.6
Vanilla RPE - 72.7 29.7
Vanilla SPE w/o STN left → right 74.0 30.5
Vanilla SPE w/o STN right → left 74.3 30.8
Vanilla SPE left → right 75.1 30.4
Vanilla SPE right → left 75.7 29.6
SymAttention APE - 74.9 30.0
SymAttention RPE - 73.6 29.1
SymAttention SPE w/o STN left → right 75.3 31.4
SymAttention SPE w/o STN right → left 75.5 30.7
SymAttention SPE left → right 76.3 30.9
SymAttention SPE right → left 76.6 31.7

the limited number of latent TB CXR images in the TBX11K
dataset, where only 212 CXR images depict latent TB com-
pared to 924 CXR images depicting active TB. Therefore,
future research should address this data imbalance issue
and focus on improving the detection of latent TB areas.
Furthermore, we observe that the performance in terms of
APbb

50 is generally superior to that of APbb. This suggests that
while detection models are capable of identifying the target
regions, their localization accuracy is often not very precise.
We argue that locating TB bounding box regions differs
significantly from locating regions of natural objects. Even
experienced radiologists find it challenging to precisely pin-
point TB regions. Consequently, APbb

50 is more crucial than
APbb since predicted boxes with an IoU of 0.5 with target
TB areas are sufficient to assist radiologists in identifying
TB infection areas.

In Fig. 5, we present the precision-recall (PR) curves for
the detection error analyses, focusing on category-agnostic
TB detection. It is evident that all methods exhibit substan-
tial improvements when transitioning from an IoU thresh-
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Healthy Sick but Non-TB Active TB Latent TB Active & Latent TB Uncertain TB

Fig. 6. Visualization of the learned deep features from CXR images using SymFormer w/ RetinaNet. We randomly select CXR images from
the TBX11K test set, and for each class mentioned in Table 2, we provide one example. In each example, the infection areas of active TB, latent
TB, and uncertain TB are indicated by boxes colored in green, red, and blue, respectively. The ground-truth boxes are displayed with thick lines,
while the detected boxes are shown with thin lines.

TABLE 9
Evaluation results (%) of the 4-fold cross-validation. The used model is our SymFormer w/ RetinaNet using ResNet-50 w/ FPN as the

backbone. We split the TBX11K trainval set into 4 folds, each of which has a similar class distribution. “#Total” denotes the total number of test
CXR images in each fold. We only use TB CXR images to evaluate category-agnostic TB area detection.

Fold Accuracy AUC Sensitivity Specificity AP AR F1 score TP/#Total TN/#Total FP/#Total FN/#Total APbb
50 APbb

1 94.7 98.9 92.2 97.5 91.1 94.6 87.6 11.0 85.8 2.2 0.9 74.7 31.7
2 95.2 98.9 92.6 97.6 91.7 95.0 88.1 11.1 86.0 2.1 0.9 75.2 30.4
3 94.6 99.1 92.9 96.9 90.5 94.6 86.4 11.1 85.3 2.7 0.8 74.1 29.5
4 95.1 99.3 92.9 97.3 91.2 94.7 87.4 11.1 85.7 2.4 0.8 75.4 33.3

old of 0.75 to 0.5. This indicates that the performance of all
methods is particularly challenged at higher IoU thresholds
due to their limited object localization capabilities. Compar-
ing the results obtained using all CXR images with those
using only TB CXR images, we observe that the region
labeled as “FN” (false negatives) is larger when evaluating
using all CXR images. This suggests that the filtering process
based on image classification disregards many correctly
detected TB areas, despite its effectiveness in improving
overall detection performance. Importantly, the “FN” region
for SymFormer is significantly smaller than that of other
methods, highlighting its superior ability to detect fewer
false negatives. Regardless of whether all CXR images or
only TB CXR images are utilized, SymFormer consistently
exhibits higher PR curves for IoU thresholds of 0.75, 0.5, and
0.1. By considering the results of both image classification
and TB infection area detection, we can confidently conclude
that the proposed SymFormer achieves state-of-the-art per-
formance and serves as a strong baseline for future research
in the field of CTD.

6.3 Ablation Study
In this part, we first carry out ablation studies to investigate
the effectiveness of the proposed modules. Specifically, we
train the models using the training set of our TBX11K
dataset and evaluate them on the validation set. The results
are presented in Table 8. The baseline model is RetinaNet
[69], which corresponds to the first model in Table 8 and
does not incorporate any attention or positional encoding.

The term “vanilla attention” refers to the deformable atten-
tion employed in Deformable DETR [68]. We utilize well-
established implementations for both absolute positional
encoding [35], [36] (as described in Eq. 1) and relative
positional encoding [79]. As specified in Eq. 2, the default
version of SPE transfers the right side of the positional
encoding to the left side. Here, we also evaluate the per-
formance when transferring the left side to the right side.

Based on the discussions in §6.2, the APbb
50 metric is

deemed sufficient for measuring the effectiveness of a model
in assisting radiologists with identifying TB infection ar-
eas. As evident from Table 8, relative positional encoding
achieves inferior performance compared to absolute po-
sitional encoding, leading us to construct our SPE using
absolute positional encoding. Besides, the addition of ab-
solute positional encoding and any form of attention to
RetinaNet [69] yields significant improvements in detection
performance. Furthermore, across all types of positional
encoding, our proposed SymAttention consistently outper-
forms deformable attention, showcasing its superiority in
learning distinctive representations for CTD. Notably, even
without STN, the proposed SPE consistently achieves su-
perior performance compared to both absolute positional
encoding and relative positional encoding. The inclusion of
STN further enhances the performance of SPE, confirming
its effectiveness. Therefore, our investigation into symmetric
abnormality search in CTD has yielded successful results. In
addition, we can observe that, for the symmetry of SPE, the
transfer of positional encoding from right to left, as opposed
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SSD [72] RetinaNet [69] Faster R-CNN [74] FCOS [73] Deformable DETR [68] SymFormer w/ RetinaNet

Fig. 7. Qualitative comparison between the proposed SymFormer and baseline methods. In each example, the infection areas of active TB
and latent TB are indicated by green boxes and red boxes, respectively. The ground-truth boxes are displayed with thick lines, while the detected
boxes are shown with thin lines. For all examples, SymFormer can detect all TB infection areas with true categories.

to left to right, slightly outperforms. Thus, we transfer the
positional encoding from right to left by default.

To demonstrate the robustness of the proposed Sym-
Former, we perform a 4-fold cross-validation. We partition
the TBX11K trainval data into four folds, ensuring that
each fold maintains a similar class distribution. During each
trial, we train SymFormer on three of these folds and eval-
uate its performance on the remaining fold. The evaluation
results of the four trials are displayed in Table 9. As can be
observed, the results across these different trials are remark-
ably consistent, affirming the robustness of SymFormer.

6.4 Visualization
To gain insights into the learning process of deep neural
networks on CXR images, we visualize the feature map of
SymFormer w/ RetinaNet at a scale of 1/32. To achieve this,
we employ principal component analysis (PCA) to reduce
the channels of the feature map to a single channel. The
resulting single-channel map is then converted into a heat
map for visualization purposes. The visualization of the
learned features, along with the corresponding detection re-
sults, are presented in Fig. 6. Upon analysis, we observe that
the visualization of healthy cases exhibits irregular feature
patterns, indicating the absence of significant abnormalities.
In contrast, the visualization of sick but non-TB cases dis-
played some discernible highlights, potentially representing

the presence of lesions. For TB cases, the highlights in the
visualization map align well with the annotated TB infection
areas, thereby indicating the effectiveness of the proposed
SymFormer in learning deep features for TB area detection.
Furthermore, in Fig. 7, we offer qualitative comparisons
between the proposed SymFormer and the baseline models
for TB infection area detection. As evident, SymFormer
consistently delivers superior qualitative detection results.

7 CONCLUSION

Early diagnosis plays a crucial role in effectively treat-
ing and preventing tuberculosis (TB), a prevalent infec-
tious disease worldwide. However, TB diagnosis remains
a significant challenge, particularly in resource-constrained
communities and developing countries. The conventional
gold standard test for TB necessitates a BSL-3 laboratory
and is a time-consuming process, taking several months to
provide definitive results, making it impractical in many
settings. Deep learning has shown promising advancements
in various domains, prompting researchers to explore its
potential in computer-aided TB diagnosis (CTD). Nonethe-
less, the lack of annotated data has hindered the progress
of deep learning in this field. To address this limitation, we
introduce TBX11K, a large-scale TB dataset with bounding
box annotations. This dataset not only facilitates the training
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of deep neural networks for CTD but also serves as the first
dataset specifically designed for TB detection.

In addition to the dataset, we propose a simple yet
effective framework called SymFormer for simultaneous
CXR image classification and TB infection area detection.
Leveraging the bilateral symmetry property inherent in CXR
images, SymFormer incorporates Symmetric Search Atten-
tion (SymAttention) to extract distinctive feature represen-
tations. Recognizing that CXR images may not exhibit strict
symmetry, we introduce Symmetric Positional Encoding
(SPE) to enhance the performance of SymAttention through
feature recalibration. Furthermore, to provide a benchmark
for CTD research, we introduce evaluation metrics, assess
baseline models adapted from existing object detectors, and
launch an online challenge. Our experiments demonstrate
that SymFormer achieves state-of-the-art performance on
the TBX11K dataset, positioning it as a strong baseline for
future research endeavors. The introduction of the TBX11K
dataset, the SymFormer method, and the CTD benchmark
in this study are expected to significantly advance research
in the field of CTD, ultimately contributing to improved
detection and management of TB worldwide.
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