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Abstract

This paper presents a simple but performant semi-
supervised semantic segmentation approach, called Cor-
rMatch. Previous approaches mostly employ complicated
training strategies to leverage unlabeled data but overlook
the role of correlation maps in modeling the relationships
between pairs of locations. We observe that the correlation
maps not only enable clustering pixels of the same category
easily but also contain good shape information, which pre-
vious works have omitted. Motivated by these, we aim to
improve the use efficiency of unlabeled data by designing
two novel label propagation strategies. First, we propose to
conduct pixel propagation by modeling the pairwise similari-
ties of pixels to spread the high-confidence pixels and dig out
more. Then, we perform region propagation to enhance the
pseudo labels with accurate class-agnostic masks extracted
from the correlation maps. CorrMatch achieves great per-
formance on popular segmentation benchmarks. Taking the
DeepLabV3+ with ResNet-101 backbone as our segmenta-
tion model, we receive a 76%+ mIoU score on the Pascal
VOC 2012 dataset with only 92 annotated images. Code is
available at https://github.com/BBBBchan/CorrMatch.

1. Introduction
With the development of deep learning techniques, especially
convolutional neural networks (CNNs) [12,14,21,55,60,69],
many significant semantic segmentation methods [5, 15, 18,
28, 65, 68, 71] have achieved remarkable results. However,
methods based on deep learning often require large-scale
pixel-wise annotated datasets with a massive amount of la-
beled images. Compared to the image classification and
object detection tasks [8,38], the accurate annotations for seg-
mentation datasets are very expensive and time-consuming.

Recently, many researchers have sought to address the
above challenge by reducing the demand for large-scale
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Figure 1. Comparison with state-of-the-art methods on the Pascal
VOC dataset. Our CorrMatch outperforms all others for all splits.

accurately annotated data in the semantic segmentation
task by presenting weakly-supervised [26, 27, 53, 56], semi-
supervised [11, 22, 23, 41], or even unsupervised segmenta-
tion methods [13, 19, 24, 50]. Among these schemes, semi-
supervised semantic segmentation only requires a small
amount of labeled data accompanied by a large amount of
unlabeled data for training, which approaches real-world sce-
narios more and hence attracts the favor of more and more
researchers from academia and industry.

In the literature of semi-supervised semantic segmenta-
tion, most works adopt the Mean Teacher architecture [23,
29, 39, 61] or self-training strategy [31, 64, 66] to enable con-
sistency regularization. As shown in Tab. 1, these methods
often require extra networks or training stages, complicating
the training process. Although the recent UniMatch [63]
has shown that a single-stage pipeline is sufficient, it still
demands multiple strong augmentation data streams. Unlike
them, our CorrMatch is a simpler framework with no need
for multiple networks, training stages, or strong augmenta-
tion data streams.

Furthermore, in previous works [39,61,64], the most pop-

https://github.com/BBBBchan/CorrMatch


Table 1. Differences between our CorrMatch and some representa-
tive approaches. SDA denotes strong data augmentation.

Method
Multiple
networks

Multi-train
stages

Multiple SDA
streams

Pairwise
similarity

PS-MT [39] ✓ ✘ ✘ ✘

ST++ [64] ✘ ✓ ✘ ✘

ELN [34] ✓ ✓ ✘ ✘

UniMatch [63] ✘ ✘ ✓ ✘

CorrMatch ✘ ✘ ✘ ✓

ular way to leverage unlabeled data is setting a fixed thresh-
old to screen reliable pixels as pseudo labels. However, those
methods often struggle to efficiently utilize unlabeled data
due to the trade-off between pseudo-label proportion and
accuracy via threshold adjustments. Beyond that, motivated
by the fact that the correlations between pixels can reflect the
pairwise similarities, which indicates semantically similar
pixels exhibit higher similarity on the correlation map, we re-
consider the challenge of accurately assigning pseudo labels
to unlabeled data from a label propagation perspective.

First, considering the correlation maps embed the global
pairwise similarities, we propose the pixel propagation strat-
egy. With correlation maps constructed from extracted fea-
tures, the pixel propagation strategy spreads them into pre-
dictions, which enriches predictions with global similarities
information and fosters semantic consistency. Meanwhile,
with the observation that every row of a correlation map is
equipped with local shape information, a series of binary
maps that capture the objects’ shapes can be acquired. Thus,
coupled with the most salient predicted class within the in-
tersection of the shapes and high-confidence regions, we
propose the region propagation strategy to enhance pseudo
labels by accurately assigning class labels to these shapes.
By considering the union of shapes and high-confidence re-
gions as the new ones, the high-confidence regions can be
expanded, consequently improving the use efficiency of unla-
beled data. As shown in Fig. 1, our CorrMatch outperforms
all previous approaches.

Our main contributions can be summarized as follows:
• We demonstrate the two advantages of correlation maps in

improving the use efficiency of unlabeled data.
• We design a simple but performant semi-supervised seman-

tic segmentation framework containing two novel label
propagation strategies.

• Our CorrMatch achieves new state-of-the-art performance
on the Pascal VOC 2012 and Cityscapes datasets without
any computation burden during inference.

2. Related Work
2.1. Semi-Supervised Learning

Semi-supervised learning [44, 76] is proposed to settle a
paradigm that how to construct models using both labeled

and unlabeled data and has been studied long before the
deep learning era [2, 3, 30]. And certainly, semi-supervised
learning has gained more attention with advancements in
deep learning and computer vision [4, 16, 37, 58, 59, 77].

Since Bachman et al. [1] proposed a consistency
regularization-based method, many approaches, such as Π-
Model [36, 43], Mean Teacher [48] and Dual Student [33]
have migrated it into the semi-supervised learning field. Re-
cently, FixMatch [46] provides a simple weak-to-strong
consistency regularization framework and serves as many
other relevant methods’ baseline [17, 47, 49, 63]. However,
many follow-up works [51,62,67] have pointed out that sim-
ply setting a manually fixed threshold may lead to inferior
performance and slow convergence speed. Among them,
FreeMatch [51] provides a dynamic threshold scheme con-
nected with the model’s learning process. However, these
strategies designed for classification are not suitable for seg-
mentation as multiple categories often exist in each image.

2.2. Semi-Supervised Semantic Segmentation

As semi-supervised learning has achieved surprising results
in the image classification [36,37,46,48], many works adopt
the same setting for semantic segmentation [22, 41, 57].

One type of methods [11, 23, 39, 52, 61, 70, 72, 75] adopt
the Mean Teacher architecture. U2PL [52] attempts to use
unreliable predictions via contrastive learning better. PS-
MT [39] builds a stricter teacher with the VAT [40] technique.
ELN [34] uses an error localization network to mitigate the
performance degradation caused by confirmation bias due to
invalid pseudo labels. All of these methods demand multi-
networks for training. Meanwhile, another type of method,
self-training based methods [9,31,64,66], often require mul-
tiple training stages. Among them, ST++ [64] proposes
a three-stage paradigm with strong augmentation. Simple-
Base [66] uses separated batch normalization [25] for images
with different augmentation. PC2Seg [74] uses feature-space
contrastive learning besides consistency training. Recently,
UniMatch [63] adopted a single-stage framework based on
FixMatch [46] via multiple strong augmentation branches.
Unlike all the above, CorrMatch explores how to take advan-
tage of correlation maps better to improve the use efficiency
of unlabeled data via label propagation.

3. CorrMatch
The goal of semi-supervised semantic segmentation is to
train a semantic segmentation network F with a small la-
beled image set and a large unlabeled image set. We present
a single-stage framework CorrMatch, which leverages pair-
wise correlations to achieve two label propagation strategies.

3.1. Preliminaries

CorrMatch is built upon a simple framework [63] with
weak-to-strong consistency regularization. A standard cross-
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Figure 2. Illustration of our CorrMatch pipeline for unlabeled images. We build it upon the DeepLabv3+ framework [5]. Besides consistency
regularization, CorrMatch adopts two label propagation strategies with correlation matching.

entropy loss is applied for labeled images {xl
i} and their

corresponding labels {yli}. And unlabeled images {xu
i } are

mainly leveraged by enforcing prediction consistency. For
an unlabeled image, xw

i and xs
i represent its augmented

version with weak and strong augmentation, respectively.
The consistency regularization treats the prediction of xw

i

as the pseudo label for xs
i . We demonstrate the pipeline of

unlabeled images in Fig. 2.
Given a mini-batch of N unlabeled images, we encourage

the outputs to be consistent for both weakly and strongly
augmented inputs with hard supervision:

Lh
u =

1

N

N∑
i

ℓc(F(xs
i ),F(xw

i ))⊙Mi, (1)

where ℓc is the pixel-wise cross-entropy loss function and
⊙ is the element-wise multiplication. Mi is a binary map
indicating the positions with high confidence predictions in
F(xw

i ), which can be written as:

Mi = 1(max(F̂(xw
i )) > τ), (2)

where F̂(xw
i ) ∈ RK×HW is the logits output produced by

the semantic segmentation network F and K is the class
number. τ is a threshold used to screen high-confidence
predicted pixels as the pseudo label.

However, Lh
u only treats F(xw

i ) as the hard pseudo label
for F(xs

i ) and thus ignores additional information stored in
logits F̂(xw

i ). Taking this into account, we further consider
the consistency between the logits of the weakly and strongly
augmented images in high-confidence regions. In Eqn. (3),
we give the formula of Ls

u for soft supervision.

Ls
u =

1

N

N∑
i=1

KL(F̂(xs
i ), F̂(xw

i ))⊙Mi, (3)

where KL(·) is Kullback-Leibler Divergence loss function.
We view the above framework as our baseline.

3.2. Pixel Propagation

As discussed in Sec. 1, pseudo labels obtained through
threshold-based selection overlook the semantic similarity
between pixels, constraining the utilization of unlabeled data.
In this section, we propose the pixel propagation strategy to
enhance the model’s overall awareness of pairwise similari-
ties and consequently improve the utilization of unlabeled
data, which involves two steps: (1) calculating correlation
maps and (2) spreading correlation maps into predictions.

We first extract features w1 and w2 ∈ RD×HW through
linear layers after the encoder of the network, where D is the
channel dimension and HW is the number of feature vec-
tors. These extracted features enable correlation matching to
quantify the degree of pairwise similarity. Thus, we compute
the correlation map C by performing a matrix multiplication
between all pairs of feature vectors:

C = Softmax(w⊤
1 · w2)/

√
D, (4)

where ⊤ denotes the matrix transpose operation. The correla-
tion map C ∈ RHW×HW is a 2D matrix and is activated by
a Softmax function to yield pairwise similarities. C enables
accurate delineation of the corresponding regions belonging
to the same object as shown in Fig. 2 and inspires us to
propagate it into pseudo labels using correlation matching.
More visualizations can be found in Fig. 3.

To enhance the model’s awareness of pairwise similarity,
we spread the correlation map C into model logits outputs
F̂(xu

i ) to attain another representation of the prediction zui ∈
RK×HW via label propagation:

zui = f1(F̂(xu
i )) · C, (5)

where f1(·) is a bilinear interpolation for shape matching.
The resulting zui emphasizes the pairwise similarities of the
same object through the correlation map.



Therefore, a correlation loss Lc
u can be calculated be-

tween zui and the high-confidence pseudo labels as the su-
pervision, which can be written as follows:

Lc
u =

1

|N |

N∑
i=1

(ℓc(z
u
i ,F(xw

i )))⊙Mi. (6)

For the labeled images {xl
i}, we also compute the cross-

entropy loss between zli and yli as the supervised correlation
loss Lc

s, where zli can be attained using Eqn. (5). So far, given
a weakly augmented unlabeled image xw

i , its correlation map
Cw
i can effectively model pairwise similarities.

3.3. Region Propagation

During experiments, we also observe that every row c in Cw
i

denotes the similarity between individual feature vectors and
all vectors within the entire feature map, which implicitly
encapsulates shape information. With this observation, we
propose the region propagation strategy to enhance pseudo
labels with these shapes information. Specifically, we first
normalize c and turn it into a binary map ĉ:

ĉ = f2(1(
c−min(c)

max(c)−min(c)
> 0.5)), (7)

where f2(·) is a shape-matching function to align the shapes
of ĉ and F(xw

i ). As shown in Fig. 3, the shape information
ĉ ∈ RH×W explicitly embeds class agnostic shape infor-
mation. For every ĉ, we can calculate the overlap ratio r1
between ĉ and the high-confidence regions Mi. When ĉ has
a large overlap with Mi, (i.e., r1 > τ ), we are able to use ĉ
to adjust the pseudo label F(xw

i ).
Given the current pseudo labels F(xw

i ), we can calcu-
late the quantity of each unique class l ∈ L within high-
confidence shape (F(xw

i ) ⊙ Mi ⊙ ĉ) by a function G(l)
and locate the most significant class k∗ with the following
equation:

k∗ = argmaxl∈LG(l), (8)

G(l) =
∑
HW

1[(F(xw
i )⊙Mi ⊙ ĉ) = l], (9)

where L is the set of all unique classes that present in pre-
dictions F(xw

i ). With the most significant class k∗, we can
calculate its proportion r2 within the high-confidence shape.

When k∗ highly coincides with the high-confidence shape,
(i.e., r2 > τ ), we can propagate the specific class k∗

into the enhanced pseudo label F(xw
i ) and expanded high-

confidence regions Mi by matching the certain shape ĉ.

F(xw
i ) =

{
k∗, ĉ = 1

F(xw
i ), ĉ = 0

,Mi = Mi ∪ ĉ (10)

However, considering the intricate computations required
for each specific shape within the correlation map and the fre-
quent occurrence of similar semantic information in adjacent
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Figure 3. Illustration of our proposed propagation strategies. White
areas are ignored regions due to low confidence. Combining the
shape information with the most salient class, CorrMatch can signif-
icantly enhance pseudo labels and expand high-confidence regions.

regions, resulting in similar shapes in the correlation map, it
becomes evident that involving every row of the correlation
map in pseudo labels optimization is redundant. Hence, we
employed a random sampling approach within the correla-
tion map to expedite label propagation. As shown in Fig. 3,
region propagation significantly expands high-confidence
regions with shape information and the most salient class.

It is also worth mentioning that the correlation map con-
struction process and label propagation only participate in
the training process and hence do not bring any additional
computational burdens during the inference process.

3.4. More Details

Dynamic threshold. As mentioned in FreeMatch [51], using
a fixed threshold τ that is too strict or too loose is detrimen-
tal to model convergence. At the same time, we observe
that the most suitable thresholds are different for different
experimental settings (Fig. 5d). Thus, We provide a dynamic
threshold strategy that is related to the training process.

Given the threshold τ a relatively small value (0.85) as
initialization, the strategy of updating τ depends on the logits
F̂(xw

i ). We use the exponential moving average (EMA) [42]
to iteratively update τ . Each increment is defined as:

∆τ =
1

|L|
∑
l∈L

max[1(F(xw
i ) = l)⊙ c

max(F̂(xw
i ))], (11)

where
c

max(·) denotes taking the maximum value along the
channel dimension. This operation aims to take the maxi-
mum confidence of all predicted classes in F̂(xw

i ) and use
their average as the increment for each iteration. We found
that such a simple threshold updating strategy works well.
We will further show in Sec. 4.3 that τ is insensitive to ini-
tialization. The corresponding pseudo code is provided in
the supplementary materials.



Table 2. Comparisons of CorrMatch with the state-of-the-art approaches on the Pascal VOC 2012 val set in terms of mIoU (%). All methods
are trained on the classic setting, i.e., the labeled images are selected from the original VOC train set, which consists of 1,464 images.

Method Training Size 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)

ST++ [64] 321 × 321 65.2 71.0 74.6 77.3 79.1
UniMatch [63] 321 × 321 75.2 77.2 78.8 79.9 81.2
Mean Teacher [48] 513 × 513 51.7 58.9 63.9 69.5 71.0
CutMix-Seg [11] 513 × 513 52.2 63.5 69.5 73.7 76.5
PseudoSeg [78] 513 × 513 57.6 65.5 69.1 72.4 73.2
CPS [6] 513 × 513 64.1 67.4 71.7 75.9 -
PC 2 Seg [74] 513 × 513 57.0 66.3 69.8 73.1 74.2
U2 PL [52] 513 × 513 68.0 69.2 73.7 76.2 79.5
PS-MT [39] 513 × 513 65.8 69.6 76.6 78.4 80.0
GTA [29] 513 × 513 70.0 73.2 75.6 78.4 80.5
PCR [61] 513 × 513 70.1 74.7 77.2 78.5 80.7
RC2L [70] 513 × 513 65.3 68.9 72.2 77.1 79.3
CCVC [54] 513 × 513 70.2 74.4 77.4 79.1 80.5
CorrMatch 321 × 321 76.4 78.5 79.4 80.6 81.8

Loss function. The overall objective function L is a com-
bination of supervised loss Ls and unsupervised loss Lu:
L = 1

2 (Ls + Lu). Like most methods, we use the cross-
entropy loss function Lh

s as the basic supervision of labeled
data Dl. Therefore, the supervised loss Ls is defined as
the combination of Lh

s and supervised correlation loss Lc
s:

Ls =
1
2 (L

h
s+Lc

s). As for unsupervised loss Lu on unlabeled
data Du, it can be expressed as follows:

Lu = λ1Lh
u + λ2Ls

u + λ3Lc
u, (12)

where Lh
u,Ls

u and Lc
u denote the unsupervised hard loss,

soft loss, and correlation loss. And [λ1, λ2, λ3] are set to
[0.5, 0.25, 0.25] by default.

4. Experiments
4.1. Experiment Setup

Datasets. We report results on the Pascal VOC 2012 and
Cityscapes datasets. Pascal VOC 2012 is a semantic seg-
mentation benchmark with 21 classes, consisting of 1,464
high-quality annotated images for training and 1,449 images
for evaluation originally [10]. We also conduct experiments
on the aug Pascal VOC 2012 dataset, which contains more
coarsely annotated images from the Segmentation Boundary
Dataset (SBD) [20], resulting in 10,582 training images in
total. Cityscapes is an urban scene understanding dataset,
including 2,975 training and 500 validation images with fine
annotations [7]. It contains 19 classes of urban scenes, and
all images have the resolution of 1024×2048.

Implementation details. Following most previous
semi-supervised semantic segmentation methods, we use
DeepLabV3+ [5] with ResNet-101 [21] pre-trained on Im-
ageNet [8] as the backbone. For the training on the Pascal
VOC 2012 dataset, we use stochastic gradient descent (SGD)

optimizer with an initial learning rate of 0.001, weight decay
of 1e−4, crop size of 321×321 or 513×513, batch size of
16, and training epochs of 80. For the Cityscapes dataset,
following UniMatch [63], we use stochastic gradient descent
(SGD) optimizer with an initial learning rate of 0.005, weight
decay of 1e−4, crop size of 801 × 801, batch size of 16, and
training epochs of 240 with 4 × A40 GPUs.

As for evaluation metrics, we report the mean
Intersection-over-Union (mIoU) with original images fol-
lowing previous papers [6, 11, 39] for the Pascal VOC 2012
dataset. For Cityscapes, same as previous methods [6,52,63],
we apply slide window evaluation with a fixed crop in a
sliding window manner and then calculate mIoU on these
cropped images. All the results are measured on the standard
validation set based on single-scale inference.

4.2. Comparison with State-of-the-art Methods

Results on classic Pascal VOC 2012. We show the perfor-
mance of our method with other state-of-the-art methods on
the classic Pascal VOC 2012 Dataset in Tab. 2. Our experi-
ments are conducted on various splits of the original train set
following the data partition in CPS [6]. On the full split, our
method gets 81.8% mIoU. Also, CorrMatch achieves con-
sistent performance gains compared to existing state-of-art
approaches. Particularly, CorrMatch outperforms UniMatch
by 1.2%, 1.3%, 0.6%, 0.7% and 0.6% on each split.

Results on aug Pascal VOC 2012. In Tab. 3, we show our
performance and compare it with existing methods on the
aug Pascal VOC 2012 Dataset. It is clear that our results
are consistently much better than the existing best ones. We
conduct experiments on 1/16, 1/8, and 1/4 splits, respectively.
Under the 321×321 training size (top-left of Tab. 3), com-
pared to the supervised baseline, CorrMatch gets +12.0%,
+7.4%, and +5.5% improvements. In addition, our approach



Table 3. Comparisons of state-of-the-art methods on the Pascal VOC 2012 val set with mIoU (%) metric. All methods are trained on the aug
setting, i.e., the labeled images are selected from the aug VOC train set, which consists of 10, 582 images. † means using U2PL [52]’s splits.

Method Train size
1/16 1/8 1/4
(662) (1323) (2646)

Supervised 321 × 321 65.6 70.4 72.8
ST++ [64] 321 × 321 74.5 76.3 76.6
CAC [35] 321 × 321 72.4 74.6 76.3
UniMatch [63] 321 × 321 76.5 77.0 77.2
CorrMatch 321 × 321 77.6 77.8 78.3

U2PL† [52] 513 × 513 77.2 79.0 79.3
GTA† [29] 513 × 513 77.8 80.4 80.5
PCR† [61] 513 × 513 78.6 80.7 80.7
CCVC† [61] 513 × 513 76.8 79.4 79.6
AugSeg† [73] 513 × 513 79.3 81.5 80.5
CorrMatch† 513 × 513 81.3 81.9 80.9

Method Train size
1/16 1/8 1/4
(662) (1323) (2646)

CutMix-Seg [11] 513 × 513 71.7 75.5 77.3
CCT [41] 513 × 513 71.9 73.7 76.5
GCT [32] 513 × 513 70.9 73.3 76.7
CPS [6] 513 × 513 74.5 76.4 77.7
AEL [23] 513 × 513 77.2 77.6 78.1
FST [9] 513 × 513 73.9 76.1 78.1
ELN [34] 513 × 513 - 75.1 76.6
U2PL [52] 513 × 513 74.4 77.6 78.7
PS-MT [39] 513 × 513 75.5 78.2 78.7
AugSeg [73] 513 × 513 77.0 77.3 78.8
CorrMatch 513 × 513 78.4 79.3 79.6

outperforms UniMatch by 1.1%, 0.8%, and 1.1% on each
split. As for the 513×513 training size (right of Tab. 3), Cor-
rMatch also consistently outperforms current state-of-the-art
methods. For instance, we get 79.3% mIoU on the 1/8 split
with a gain of around 2% compared to AugSeg [73].

We also report the results using the same splits as in
U2PL [52] with 513×513 training size (bottom-left of
Tab. 3), which contain more well-annotated labels and have
higher expectations of results. Compared to the best method
AugSeg [73], our method gains 2.0% improvement on the
1/16 split. Furthermore, same to other methods, we observe
that, as the split size increases from 1/8 to 1/4, the perfor-
mance decreases under this setting. This is because in the 1/8
split, almost all of the accurately labeled images are included,
and most of the images added to the larger split are coarsely
labeled, which results in no improvement in performance.

Results on Cityscapes. In Tab. 4, we compare the perfor-
mance of CorrMatch with state-of-the-art methods on the
Cityscapes dataset. We follow sliding window evaluation
and online hard example mining (OHEM) loss [45] tech-
niques, which have been widely applied in previous SOTA
works [6, 23, 39, 52, 61, 63]. It can be clearly seen that our
method can consistently outperform other methods under all
splits. Compared to UniMatch [63], our CorrMatch achieves
+0.7%, +0.6%, +0.2%, and +0.9% on 1/16, 1/8, 1/4, 1/2
splits, respectively.

4.3. Ablations Studies

In this part, we conduct a series of ablations studies to verify
the designs of proposed strategies in CorrMatch. We report
the results of the DeepLabV3+ network using ResNet-101
as the encoder on the original Pascal VOC 2012 dataset with
training size 321 × 321.

Effectiveness of components. We first conduct ablation
studies on different components of our CorrMatch to demon-

Table 4. Comparing results of state-of-the-art algorithms on the
Cityscapes val set. All the experiments are conducted with ResNet-
101 as the backbone.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

Supervised 65.7 72.5 74.4 77.8
CCT [41] 69.3 74.1 76.0 78.1
CPS [6] 69.8 74.3 74.6 76.8
AEL [23] 74.5 75.5 77.5 79.0
U2PL [52] 70.3 74.4 76.5 79.1
PS-MT [39] - 76.9 77.6 79.1
UniMatch [63] 76.6 77.9 79.2 79.5
PCR [61] 73.4 76.3 78.4 79.1
CorrMatch 77.3 78.5 79.4 80.4

strate their effectiveness in Tab. 5. With the hard unsuper-
vised loss and dynamic threshold, we get 73.6% on the 92
split and 80.0% on the 1464 split. Adding soft loss Ls

u as
the basic framework brings 0.8% and 0.5% improvements.
With the help of label propagation, we achieve another 2.0%
and 1.3% improvements. These results demonstrate the ef-
fectiveness of each of our components individually. Also,
replacing Lh

u with Ls
u results in a performance decrease,

which illustrates the importance of Lh
u. Finally, the com-

plete CorrMatch achieves 76.4% and 81.8% mIoU, which is
+2.8% and +1.8% compared to the baselines.

We also conduct experiments with the fixed threshold
(0.95). It can be observed that compared to the fixed base-
lines (73.1% and 79.9%), changing it into a dynamic manner
only brings +0.5% and +0.1%. Meanwhile, after adding all
components, the corresponding improvements can be lifted
to +0.9% and +1.0%. This proves our threshold strategy
cooperates well with our label propagation strategy.

Impact of label propagation strategies. In Tab. 6, we con-
duct the ablation study of our label propagation strategies.
Our pixel propagation strategy, which constructs the cor-



Table 5. Ablation study on the effectiveness of different compo-
nents, including threshold τ (Dyna. denotes our dynamic strategy),
hard loss Lh

u, soft loss Ls
u, label propagation P .

τ Lh
u Ls

u P 92 1464

Dyna. ✓ 73.6 80.0
Dyna. ✓ 73.1 79.6
Dyna. ✓ ✓ 74.4 80.5
Dyna. ✓ ✓ 74.6 80.6
Dyna. ✓ ✓ ✓ 76.4 81.8

Fixed ✓ 73.1 79.9
Fixed ✓ ✓ 73.3 79.9
Fixed ✓ ✓ 74.3 80.1
Fixed ✓ ✓ ✓ 75.5 80.8

Table 6. Ablation study on the label propagation strategies.

Method 92 366 1464

w/o Propagation 74.4 78.5 80.5
w/ Pixel Propagation 75.8 78.9 81.3
w/ Pixel & Region Propagation 76.4 79.4 81.8

relation maps and spreads them into predictions as a new
representation with the supervision of correlation loss Lc,
brings 1.4%, 0.4%, and 0.8% improvements. Furthermore,
equipped with our region propagation strategy, more detailed
local shape information is mined and thus enhanced pseudo
labels are obtained. This strategy further improves 0.6%,
0.5%, and 0.5% on 92, 366, and 1464 splits, respectively.

Where to extract features. In the default setting, we choose
to extract features from the backbone, which makes the pro-
posed strategies more convenient to be transplanted to other
segmentation networks. Actually, given a specific network
structure, the position of feature extraction can be flexible.
Here, we consider the impact of different feature extrac-
tion positions on performance. In Tab. 7, we demonstrate
the performance of extracting features after different posi-
tions for the Deeplabv3+ decoder under different splits. The
results show that using the backbone features consistently
outperforms other alternatives.

Different sampling strategies. Since using all shapes within
the correlation map to enhance pseudo labels would incur a
substantial computational burden, it is imperative to sample
a subset of shapes from it. Here we conduct experiments
about sampling methods and quantities in Tab. 8. We conduct
experiments on random sampling R and uniform sampling
U methods, with 16, 32, 64, 128, and 256 sampling num-
bers on the 1464 split. The results show random sampling
continuously outperforms uniform sampling. Among these,
random sampling with 128 sample numbers yields the best
performance, with marginal differences compared to the
256-sample strategy. Thus, we choose to randomly sample
128 shapes from the correlation map as a trade-off between

Table 7. Ablation study on feature extraction positions. We take
features after each specific module of DeepLabV3+ to build corre-
lation maps and adopt label propagation strategies.

Position Backbone ASPP Fusion Classifier

732 80.4 79.5 79.1 79.5
1464 81.8 80.6 80.1 80.8

Table 8. Ablation study on the different sampling methods. R
denotes random sampling; U denotes uniform sampling.

Numbers 16 32 64 128 256

R 81.1 81.2 81.4 81.8 81.7
U 81.0 81.1 81.2 81.4 81.0

(a) w/o propagation (b) w/ propagation (c) GT

Figure 4. Qualitative results on the Pascal VOC 2012 dataset. (a)
Pseudo labels without label propagation; (b) Pseudo labels with
CorrMatch; (c) Ground truth. White areas in (a) and (b) are ignored
regions due to low confidence.

computational efficiency and performance.

Different initial values for CorrMatch. Since our EMA-
based threshold updating strategy needs an initial value for
τ , we discuss the impact of different initialization values for
τ in Fig. 5a. The conclusion is that our threshold strategy is
insensitive to different initialization values. Even with dif-
ferent threshold initialization values, all the thresholds tend
to approach a similar value very quickly (around 1500 itera-
tions) in the early stage of training (around 40000 iterations
in total) under all experiment settings.

4.4. Correlation Helps Mining Reliable Regions

Statistics. Ideally, all correctly predicted points should be
regarded as pseudo labels for the unlabeled data. To demon-
strate the ability of correlation matching to help label propa-
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Figure 5. Some statistics on label propagation and the threshold strategy. For (a), (b), and (c), experiments are conducted on the 1464 split.

gation, we count the mining ratio and effective pseudo label
ratio in Fig. 5b and Fig. 5c. The mining ratio is the propor-
tion of selected high-confidence pixels among all correctly
predicted pixels. The effective pseudo label ratio is the pro-
portion of accurately predicted pseudo labels to the whole
image, which can reflect effective pseudo label numbers. It
can be clearly seen that with the proposed label propagation
strategies, the mining ratio and effective pseudo label ratio
are significantly higher than those without them, which il-
lustrates that the utilization of unlabeled data has improved
effectively. This further indicates our strategies can improve
the overall quality of pseudo labels by leveraging similarity
and shape information from correlation maps.

Qualitative analysis. In Fig. 4, we give some visual-
ization results to further demonstrate the effectiveness of
our label propagation strategies. Comparing Fig. 4b and
Fig. 4a, it is obvious that with the support of label propa-
gation, the number of pixels and completeness of the high-
confidence regions are significantly better than those with-
out it. This means that our method can effectively expand
high-confidence regions and populate these regions with the
correct categories. We will provide more detailed qualitative
results in the supplementary materials.

5. Discussions on Label Propagation Strategy

Traditionally, semi-supervised semantic segmentation meth-
ods mostly rely on adjusting thresholds to expand high-
confidence regions [52, 63]. However, selecting the most
suitable threshold could be a challenging task. For instance,
our observations illustrated in Fig. 5d, indicate that the op-
timal threshold can vary significantly. Fig. 6a and Fig. 6b
further demonstrate that a too-strict threshold restricts the
unlabeled data utilization, while a lenient threshold results
in fragmented incorrect pixel predictions.

Different from the scheme of directly adjusting the thresh-
old, label propagation does not merely expand the high-
confidence regions; it assigns accurate predictions to pseudo
labels by utilizing accurate shapes within the correlation
map, which helps maintain more consistent semantic struc-
tures within high-confidence regions and thus mitigates the

(a) Threshold=0.95 (b) Threshold=0

(c) Label propagation (d) GT

Figure 6. Comparisons of pseudo labels with different strategies.

discontinuity issue. In Fig. 6c and the last column of Fig. 5d,
we show the pseudo label and performance of CorrMatch.
This indicates that our CorrMatch consistently obtains more
accurate and complete pseudo labels and achieves the highest
results on all splits.

6. Conclusions

We present CorrMatch that can utilize label propagation
with correlation matching to discover more accurate high-
confidence regions for semi-supervised semantic segmenta-
tion. The key contributions of our CorrMatch are reconsid-
ering the use of correlation maps and designing two label
propagation strategies to enrich the pseudo label. Equipped
with these strategies, CorrMatch significantly expands the
high-confidence regions and thus can utilize unlabeled data
more efficiently. Experiments show the superiority of our
CorrMatch over other methods.
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