LSKNet: 针对遥感图像分析的轻量级基础骨干网络

李宇轩¹,李翔^{1,4†},戴一冕³,侯淇彬^{1,4},刘丽²,刘永祥²,程明明^{1,4†},杨健^{1†}

¹ 视觉计算与图像处理重点实验室,南开大学,天津,中国. ² 国防科技大学,长沙,中国.

³模式计算与应用实验室,南京理工大学,南京,中国. ⁴南开国际先进研究院(深圳福田),深圳,中国.

贡献作者: yuxuan.li.17@ucl.ac.uk; xiang.li.implus@nankai.edu.cn; yimian.dai@gmail.com; andrewhoux@gmail.com; lilyliu_nudt@163.com; lyx_bible@sina.com; cmm@nankai.edu.cn; csjyang@nankai.edu.cn; † 通讯作者

摘要

遥感图像由于其固有的复杂性,为下游任务带来了独特的挑战。尽管已有大量研究致力于遥感分类、目标检测、语义分割和变化检测,但大多数研究忽视了遥感场景中蕴含的宝贵先验知识。这些先验知识的重要性在于,如果不参考足够长程的上下文,遥感目标可能会被错误识别,而不同目标所需的上下文范围也各不相同。本文考虑了这些先验知识,提出了一种轻量级的自适应大核卷积骨干网络(Large Selective Kernel Network,LSKNet)。LSKNet 能够动态调整其大空间感受野,以更好地模拟遥感场景中各种目标的不同范围上下文。据作者所知,自适应选择机制和大核卷积结构在遥感图像领域尚未被探索。在不引入额外复杂结构的情况下,本文提出的轻量级LSKNet骨干网络在标准遥感分类、目标检测、语义分割和变化检测基准测试中创造了新的最优成绩。本文的全面分析进一步验证了所提出先验知识的重要性以及LSKNet 的有效性。相关代码可在https://github.com/zcabli/LSKNet获取。

关键词:遥感图像,卷积神经骨干网络,大核卷积,注意力机制,目标检测,语义分割。

1 引言

遥感图像由于其复杂的特性,包括高分辨率、随机方向、类内变化大、多尺度场景和密集小目标等,为下游任务带来了独特的挑战。为应对这些挑战,研究人员进行了广泛的探索,重点关注了各种方法,如用于分类的特征集成技术 [1-4] 和大规模预训练 [5-7]。此外,还提出了处理旋转方差 [8-10] 或采用新的定向框编码 [11,12] 的方法用于目标检测任务。同时,多尺度特征融合 [13-19] 技术的整合也被用于提高检测和分割任务的性能。随着

SAM [20] 和 LLaVA [21] 等大型模型的快速发展, 许多工作利用这些模型强大的通用知识进行下游 任务的微调 [22, 23],取得了显著的性能提升。

尽管取得了这些进展,但考虑到遥感图像的 强先验知识来构建高效基础模型的工作相对较少。 航空图像通常以鸟瞰视角捕获高分辨率图像。特 别是航空图像中的大多数目标可能很小,仅凭外 观难以识别。相反,识别这些目标需要依赖其上 下文,因为周围环境可以提供有关其形状、方向 和其他特征的有价值线索。根据对遥感数据的分 析,本文挖掘出两个重要的先验:

图 1: 成功检测遥感目标需要利用广泛的上下文信息,而感受野有限的检测器容易误判。

图 2: 根据人类标准,不同类型目标所需的上下文 信息范围差异很大。红色框内的目标为精确的真 实标注。

- 准确识别通常需要广泛的上下文信息。如图 1所示,遥感图像中目标检测器使用的有限上下文常常导致错误分类。区分船舶和车辆的不是它们的外观,而是上下文。
- 不同目标所需的上下文信息差异很大。如图 2所示,由于独特可辨识的场地边界线,足球场需要相对较少的上下文信息。相比之下,环岛可能需要更多的上下文信息来区分花园和环形建筑。交叉路口,尤其是被树木部分遮挡的部分,由于交叉道路之间的长程依赖关系,需要极大的感受野。

为解决遥感图像中准确识别目标的挑战,特别是那些通常需要广泛且动态的上下文信息的目标,本文提出了一种新颖的轻量级骨干网络,称为自适应大核卷积网络 (Large Selective Kernel Network, LSKNet)。本文的方法在特征提取骨干 网络中动态调制感受野,这使得更高效地适应和

处理所需的多样化、广泛的上下文成为可能。具体而言,本文通过空间选择性机制实现这一目标, 该机制有效地对一系列大型深度可分离卷积核处 理的特征进行加权,然后在空间上合并它们。这 些核的权重是基于输入动态确定的,使模型能够 自适应地使用不同的大型核,并根据需要调整每 个目标在空间中的感受野。

本文是对先前工作 LSKNet [24] 的扩展版 本。具体而言,本文进行了进一步的实验,以评 估所提出的 LSKNet 骨干网络在广泛的遥感应用 中的泛化能力,包括在 UCM [25]、AID [26] 和 NWPU [27] 数据集上的遥感场景分类,在合成孔 径雷达模态数据集 SAR-Aircraft [28] 上的目标检 测,在 Potsdam [29]、Vaihingen [30]、LoveDA [31]、 UAVid [32] 和 GID [33] 数据集上的语义分割任务, 以及在 LEVIR-CD [34] 和 S2Looking [35] 数据集 上的变化检测任务。此外,本文还对 LSKNet 和 SKNet 进行了全面深入的比较,以突出 LSKNet 的差异和优势。综上所述,本文的贡献可归纳为 以下**四个**主要方面:

- 挖掘出了遥感数据中存在的两个重要先验。
- 据本文所知,所提出的LSKNet 骨干网络是首次如何通过大型选择性卷积核来精确利用上述 先验完成遥感下游任务的模型。
- 尽管结构简单且轻量化,LSKNet 在 14 个广 泛使用的公共数据集上的三个重要遥感任务 中达到了最先进的性能,包括遥感场景分类 (UCM [25],AID [26],NWPU [27])、目标检 测(DOTA [36],HRSC2016 [37],FAIR1M [38], SAR-Aircraft [28])、语义分割(Potsdam [29], Vaihingen [30],LoveDA [31],UAVid [32], GID [33])和变化检测(LEVIR-CD [34], S2Looking [35])。
- 本文对所提方法进行了全面分析,进一步验证 了所挖掘先验的重要性以及 LSKNet 模型在解 决遥感图像分析挑战方面的有效性。

2 相关工作

2.1 遥感图像分析

遥感场景分类。遥感场景分类 [2, 4-6, 39, 40] 由于复杂背景和显著的类内变化而成为一项极具 挑战性的任务。为应对这一挑战,研究者提出了 多个模型,如 MGML [2]、ESD [3]和 KFBNet [4] 等。这些模型旨在利用集成技术,整合多层次特 征以提高分类性能。随着视觉 Transformer (ViT) [41]的出现,基于 ViT 的大型模型 [42, 43] 逐渐 兴起。此外,近期高性能的基于 ViT 的模型,如 RSP-ViTAE [5, 44]和 RVSA [6],在大规模遥感 数据集 millionAID [45] 上进行了预训练,进一步 推动了该领域的发展。

然而,特征集成通常会在骨干网络中引入多 个分支,这增加了复杂性并降低了计算效率。同 样,使用基于 ViT 的骨干网络可能导致模型过于 庞大,不适合某些实际应用场景。

遥感目标检测。遥感目标检测 [46-51] 专注于 在航空图像中识别和定位受关注的目标。近期的一 个主要趋势是生成能准确匹配被检测目标方向的 边界框。因此,大量研究致力于改进遥感目标检测 中的定向边界框表示。为缓解 CNN 网络固有的旋 转方差问题,研究者提出了几个著名的检测框架, 包括 RoI Transformer [52]、Oriented RCNN [11]、 S²A Network [53]、DRN [54] 和 R3Det [9]。Oriented RCNN [11] 和 Gliding Vertex [12] 通过引 入新的边界框编码系统,为解决旋转角周期性导 致的训练损失不稳定问题做出了重要贡献。此外, GWD [10]、KLD [55] 和 LD [56] 等技术被开发用 于解决回归损失的不连续性或提高边界框的定位 质量。

尽管这些方法在解决旋转方差问题上取得了 可喜的成果,但它们并未考虑航空图像中存在的 富有价值的先验信息。相比之下,本文的方法利 用大核和空间选择机制更好地建模这些先验,而 无需修改现有的检测框架。

遥感语义分割。近期遥感语义分割模型的主 要进展集中在应用注意力机制和多尺度特征融合 技术上 [13-17, 60-62]。这些方法有效地聚合了细 粒度细节和粗粒度语义,显著提升了分割性能。由 此可见,整合大感受野语义进行多尺度特征融合 对分割任务起着至关重要的作用。尽管现有方法 取得了长足的进步,但它们往往忽视了前文提到 的有价值的先验 2)。相比之下,本文提出的骨干 模型考虑了遥感图像中的宝贵先验,提供了更灵 活的多范围感受野特征,以解决这一局限性。

遥感变化检测。遥感变化检测旨在从不同时 间获取的同一位置的一对图像中分割出具有语义 变化的受关注区域。主流方法将此任务视为一种 特殊形式的双输入图像分割。这些方法涉及在模 型特征流中融合 [63-67] 或交互 [68-71] 双时相图 像的特征,然后使用分割头生成最终的变化图。 近期众多变化检测框架 [68,72] 表明,更强大的骨 干网络能显著提升性能,这说明特征提取的有效 性和高效率仍是提升变化检测模型的关键因素。

2.2 大核网络

基于 Transformer 的模型 [73], 如视觉 Transformer (ViT) [6, 41], Swin transformer [74–77] 和金字塔 transformer [78, 79], 在计算机视觉领域 日益流行。研究 [80-84] 表明, 大感受野是它们成 功的关键因素之一。更有近期研究显示,设计良 好的具有大感受野的卷积网络也能与基于 transformer 的模型相媲美。例如, ConvNeXt [85] 在 其骨干网络中使用 7×7 深度可分离卷积, 显著提 升了下游任务的性能。此外, RepLKNet [86] 通过 重参数化甚至使用了 31×31 的卷积核, 取得了令 人信服的性能。随后的 SLaK [87] 工作通过核分 解和稀疏分组技术将核大小进一步扩展到 51×51。 RF-Next [88] 为各种任务自动搜索固定的大核。 VAN [89] 引入了一种高效的大核分解作为卷积注 意力。同样, SegNeXt [90] 和 Conv2Former [91] 证明了大核卷积在调制具有丰富上下文的卷积特 征方面发挥着重要作用。

尽管大核卷积在一般目标识别中受到关注, 但在遥感检测中对其重要性的研究仍然不足。如 前文1所述,航空图像具有独特的特征,使得大核

特别适合遥感应用。据本文所知,这项工作是首 次将大核卷积引入遥感图像领域并研究其重要性。

2.3 注意力/选择机制

注意力机制 [92] 是一种简单而有效的方法, 可以增强各种任务的神经表示。通道注意力 SE 块 [93] 使用全局平均信息重新加权特征通道, 而空间注意力模块如 GENet [94]、GCNet [95]、 CTNet [96] 和 SGE [97] 通过空间掩码增强网络 建模上下文信息的能力。CBAM [98] 和 BAM [99] 结合了通道和空间注意力。自注意力机制最初在 自然语言处理领域流行 [73], 近年来在计算机视觉 领域也得到了广泛应用。视觉 Transformer (ViT) [41] 利用自注意力捕捉图像中的全局依赖关系和 上下文信息。近年来,使用自注意力机制的模型在 自然图像分类 [100]、检测 [101] 和分割 [20] 任务 中取得了极具竞争力的性能。然而,在许多遥感图 像任务中,如目标检测和分割,全局上下文信息并 非总是必要的。例如,在检测汽车时,数百米外的 河流信息并无用处。因此,最近的研究致力于将局 部先验信息引入 Transformer 模型, 如 Swin [102]、 PVT [78, 103]、HiViT [104] 和 ViTAE [105]。这 些模型在遥感场景中相比于原始 ViT 在计算效率 和优化方面具有优势 [6, 106]。

除注意力机制外,核选择是一种自适应且有效的动态上下文建模技术。CondConv [107] 和动态卷积 [108] 并行核自适应地聚合多个卷积核的特征。SKNet [59] 引入了具有不同卷积核的

多个分支,并在通道维度上选择性地组合它们。 ResNeSt [57] 通过将输入特征图划分为多个组,扩 展了 SKNet 的理念。类似地,SCNet [58] 使用分支 注意力捕获更丰富的信息,并使用空间注意力提 高定位能力。可变形卷积网络 [109,110] 为卷积单 元引入了灵活的核形状。本文的方法与 SKNet [59] 最为相似。然而,两种方法之间存在**两个关键区** 别。首先,本文提出的选择机制明确依赖于分解 技术得到的一系列大核,这与大多数现有的基于 注意力的方法不同。其次,本方法在空间维度上 自适应地聚合大核信息,而不是像 SKNet 那样在 通道维度上进行。这种设计对于遥感任务来说更 加直观和有效,因为通道维度的选择无法对图像 空间中不同目标的空间变化进行建模。详细的结 构比较列于图 3中。

3 方法

3.1 LSKNet 网络架构

LSKNet 骨干网络的整体架构主要由重复的 LSK 模块构建而成(详细信息请参阅补充材料)。LSK 模块的设计灵感来源于 ConvNeXt [111]、MetaFormer [112]、PVT-v2 [103]、 Conv2Former [91]和 VAN [89]。每个 LSK 模块 由两个残差子模块组成:大核选择(LK Selection) 子模块和前馈网络(FFN)子模块。

LK Selection 子模块能够根据需求动态调整 网络的感受野。核心的 LSK 模块 (如图 4所示)

图 4: LSK 模块的概念性示意图。

表 1: 本文中使用的 LSKNet 变体。*C_i*:特征通 道数; *D_i*:每个阶段 *i* 中 LSK 块的数量。

模型	$\{C_1, C_2, C_3, C_4\}$	$\{D_1, D_2, D_3, D_4\}$	#P
LSKNet-T	$\{32,64,160,256\}$	$\{3, 3, 5, 2\}$	4.3M
LSKNet-S	$\{64, 128, 320, 512\}$	$\{2, 2, 4, 2\}$	14.4M

表 2: 符号、维度及含义诠释。

符号	维度	含义
X	$C\times H\times W$	输入特征
N	1	选择核数量
i	1	分解核索引
$\widetilde{\mathbf{U}}_i$	$C\times H\times W$	富含上下文的特征
\mathbf{SA}_{max}	$1\times H\times W$	通过最大池化得到的空间注意力
\mathbf{SA}_{avg}	$1\times H\times W$	通过平均池化得到的空间注意力
$\widetilde{\mathbf{SA}}_i$	$N\times H\times W$	空间选择注意力
S	$C\times H\times W$	融合后的注意力特征
Y	$C \times H \times W$	输出特征

嵌入在 LK Selection 子模块中。该模块由一系列 大核卷积和空间尺度的核选择机制组成,具体细 节将在后文详细阐述。FFN 子模块用于通道混 合和特征细化,由全连接层、深度可分离卷积、 GELU [113] 激活函数和第二个全连接层依次组 成。表 1列出了本文所使用的 LSKNet 不同变体 的详细配置。此外,表 2提供了重要符号的完整 列表,包括它们对应的维度和含义。这些符号在 图 4和后续章节的方程中被广泛引用。

表 3: 两个代表性示例的理论效率比较,本文将 单个大型深度可分离卷积核展开为核序列,假设 通道数为 64。k:核大小;d:膨胀率。

\mathbf{RF}	(k, d) 序列	#P	FLOPs
<u></u>	(23, 1)	40.4K	42.4G
20	$(5,1) \longrightarrow (7, 3)$	11.3K	11.9G
20	(29, 1)	$60.4 \mathrm{K}$	63.3G
29	$(3, 1) \longrightarrow (5, 2) \longrightarrow (7, 3)$	11.3K	13.6G

3.2 大核卷积

第 1节中的先验 2) 建议对一系列多尺度长 程上下文进行建模以实现自适应选择模型感受野。 因此,本文提出通过显式分解的方式,将大核卷 积构建为一系列具有逐渐增大核尺寸和扩张率的 深度可分离卷积。具体而言,对于第 *i* 个深度可 分离卷积,核大小 *k*、扩张率 *d* 和感受野 *RF* 的 扩展定义如下:

$$k_{i-1} \le k_i \ d_1 = 1 \ d_{i-1} < d_i \le RF_{i-1},$$
 (1)

$$RF_1 = k_1 \quad RF_i = d_i(k_i - 1) + RF_{i-1}.$$
 (2)

逐渐增大的核大小和扩张率确保了感受野能够快速扩展。本文对扩张率设置了上限,以保证扩张卷积不会在特征图之间引入间隙。例如,如表 3所示,可以将大核分解为 2 个或 3 个深度可分离卷积,理论感受野分别为 23 和 29。这种设计具有两个优势:首先,它显式地产生了具有不同大感受野

的多个特征,便于后续的核选择;其次,顺序分解 比直接应用单个更大的核更加高效。如表 3所示, 在相同的理论感受野下,本文的分解方法与标准 大卷积核相比大大减少了参数数量。

为了从输入 X 中获取具有不同范围丰富上下 文信息的特征, LSKNet 应用了一系列具有不同 感受野的被分解的深度可分离卷积:

$$\mathbf{U}_0 = \mathbf{X}, \qquad \mathbf{U}_{i+1} = \mathcal{F}_i^{dw}(\mathbf{U}_i), \qquad (3)$$

其中 $F_i^{dw}(\cdot)$ 是具有核 k_i 和扩张率 d_i 的深度可分 离卷积。假设有 N 个分解核,每个核都通过 1×1 卷积层 $\mathcal{F}^{1\times 1}(\cdot)$ 进行进一步处理:

$$\widetilde{\mathbf{U}}_{i} = \mathcal{F}_{i}^{1 \times 1}(\mathbf{U}_{i}) \; \forall \mathbf{f} \cdot i \mathbf{f} [1, N] \mathbf{\psi}, \qquad (4)$$

这允许对每个空间特征向量进行通道混合。接下 来,本文提出了一种选择机制,基于获得的多尺 度特征动态选择适用于不同目标的核,这将在下 一节中详细介绍。

3.3 空间尺度的核选择机制

为了增强网络聚焦于检测目标最相关空间上 下文区域的能力,本文采用了空间选择机制,对不 同尺度的大卷积核所得到的特征图进行空间选择。 首先,本文将通过不同感受野范围的卷积核所获 得的特征进行拼接:

$$\widetilde{\mathbf{U}} = [\widetilde{\mathbf{U}}_1; ...; \widetilde{\mathbf{U}}_i], \qquad (5)$$

然后,通过对 \tilde{U} 应用基于通道的平均池化和最大 池化(分别表示为 $\mathcal{P}_{avg}(\cdot)$ 和 $\mathcal{P}_{max}(\cdot)$) 来高效提 取空间关系:

$$\mathbf{SA}_{avg} = \mathcal{P}_{avg}(\widetilde{\mathbf{U}}), \quad \mathbf{SA}_{max} = \mathcal{P}_{max}(\widetilde{\mathbf{U}}), \quad (6)$$

其中, **SA***avg* 和 **SA***max* 分别为平均池化和最大池 化后的空间特征描述符。为了实现不同空间描述 符之间的信息交互,本文将空间池化特征进行拼 接,并使用卷积层 *F*^{2→N}(·) 将池化特征(具有 2
 个通道)转换为 *N* 个空间注意力图:

$$\widehat{\mathbf{SA}} = \mathcal{F}^{2 \to N}([\mathbf{SA}_{avg}; \mathbf{SA}_{max}])_{\circ}$$
(7)

对于每个空间注意力图 $\widehat{\mathbf{SA}}_i$,本文应用 sigmoid 激 活函数以获得每个被分解大卷积核的单独空间选 择掩码:

$$\widetilde{\mathbf{SA}}_i = \sigma(\widehat{\mathbf{SA}}_i), \tag{8}$$

其中 $\sigma(\cdot)$ 表示 sigmoid 函数。分解大卷积核序列 的特征图通过其对应的空间选择掩码进行加权, 然后通过卷积层 $F(\cdot)$ 融合,得到注意力特征 **S**:

$$\mathbf{S} = \mathcal{F}(\sum_{i=1}^{N} (\widetilde{\mathbf{SA}}_{i} \cdot \widetilde{\mathbf{U}}_{i}))_{\circ}$$
(9)

LSK 模块的最终输出是输入特征 **X** 与 **S** 的 逐元素乘积,类似于 [89–91] 中的方法:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{S}_{\circ} \tag{10}$$

图 4展示了 LSK 模块的详细概念图, 直观地演示 了大选择性卷积核如何自适应地选择不同目标对 应的大感受野来工作。

4 实验论证

在主要结果中,本文采用了在 Imagenet-1K [125] 上进行 300 轮的主干网络预训练策略以 追求更高的性能,这与 [9,11,53] 的做法类似。然 而,对于场景分类任务,本文遵循 [5] 中概述的预 训练设置,在 millionAID 数据集 [45] 上进行 300 轮预训练。本文直接使用官方或者默认的训练、验 证和测试集划分,并遵循每个基准测试的主流设 置以确保公平性。在消融研究中,为了实验效率, 本文采用了在 Imagenet-1K 上进行 100 轮的主干 网络预训练策略。表格中,最佳得分用**粗体**表示, 次佳得分用下划线标注。本节中的"FLOPs" 是通 过将 1024×1024 像素的图像输入网络计算得出 的。有关实验实施的更多细节(如训练计划和数 据预处理)以及结果可视化,可参见补充材料。

模型	# P ↓	$\mathbf{FLOPs}\downarrow$	UCM-82	AID-28	AID-55	NWPU-19	NWPU-28
MSANet [114]	>42.3M	>164.3	98.96	93.53	96.01	90.38	93.52
ViT-B [41]	86.0M	118.9G	99.28	93.81	96.08	90.96	93.96
SCCov [115]	13.0M	-	99.05	93.12	96.10	89.30	92.10
MA-FE [116]	>25.6M	$> 86.3 \mathrm{G}$	99.66	-	95.98	-	93.21
MG-CAP [117]	>42.3M	>164.3G	99.00	93.34	96.12	90.83	92.95
LSENet [118]	25.9M	> 86.3 G	99.78	94.41	96.36	92.23	93.34
IDCCP [119]	25.6M	86.3G	99.05	94.80	96.95	91.55	93.76
F^2BRBM [120]	25.6M	86.3G	99.58	96.05	96.97	92.74	94.87
EAM [121]	>42.3M	>164.3	98.98	94.26	97.06	91.91	94.29
MBLANet [1]	-	-	99.64	95.60	97.14	92.32	94.66
GRMANet $[122]$	54.1M	171.4G	99.19	95.43	97.39	93.19	94.72
KFBNet [4]	-	-	99.88	95.50	97.40	93.08	95.11
CTNet $[42]$	-	-	-	96.25	97.70	93.90	95.40
RSP-R50 [5]	25.6M	86.3G	99.48	96.81	97.89	93.93	95.02
RSP-Swin $[5]$	27.5M	<u>37.7G</u>	99.52	96.83	98.30	94.02	94.51
RSP-ViTAE $[5]$	19.3M	119.1G	99.90	96.91	98.22	94.41	95.60
RVSA [6]	114.4M	301.3G	-	97.01	98.50	93.92	95.66
ConvNext [85]	28.0M	93.7G	99.81	95.43	97.40	94.07	94.76
FSCNet [123]	28.8M	166.1G	100	95.56	97.51	93.03	94.76
UPetu [124]	87.7M	> 322.2 G	99.05	96.29	97.06	92.13	93.79
MBENet [3]	23.9M	108.5G	99.81	96.00	98.54	92.50	95.58
FENet [2]	23.9M	92.0G	99.86	96.45	98.60	92.91	95.39
\star LSKNet-T	4.3M	19.2G	99.81	96.80	98.14	94.07	<u>95.75</u>
\star LSKNet-S	<u>14.4M</u>	54.4G	99.81	97.05	98.22	94.27	95.83

表 4: 不同模型在场景分类上的性能表现。

4.1 场景分类

4.1.1 分类数据集

遥感图像分类的主流方法 [1, 5, 120, 122] 通 常在三个标准场景识别数据集上进行实验,包括 UC Merced 土地利用(UCM) [25] 数据集、航空 图像数据集(AID) [26] 和西北工业大学收集的 图像场景分类(NWPU) [27] 数据集。

UCM 是一个相对较小的数据集,仅包含 2,100 张图像和 21 个类别,每个类别有 100 张图 像。所有图像的尺寸为 256 × 256。

AID 包含 10,000 张图像, 分为 30 个类别, 所 有图像的尺寸为 600 × 600。

NWPU 是一个相对较大的数据集,包含31,500 张图像和 45 个类别,每个类别有 700 张图像。所有图像的尺寸为 256 × 256。

遵循遥感分类工作的主流方法 [1, 5, 120, 122], 本文在五个标准基准上进行实验, 即 UCM-82、AID-28、AID-55、NWPU-19 和 NWPU-28。

4.1.2 分类结果

表 4展示了各种对比方法的分类结果。本文将 所提出的 LSKNets 与其他 22 种最先进的遥感场 景分类方法进行了比较。值得注意的是,在不使用 任何技巧 (如 MBENet [3] 和 FENet [2] 中的特征 集成)的情况下,本文提出的轻量级模型 LSKNet-T 和 LSKNet-S 在多个数据集上都展现出了具有 竞争力的性能。这些结果表明,LSKNet 在各种场 景下进行准确场景分类方面具有良好的效果,同 时也展示了其作为骨干网络进行特征提取的潜力。

表 5: 在 DOTA-v1.0 数据集上与最先进模型的比较,采用多尺度训练和测试。*: 与比较方法类似,使用 EMA 微调 [126]。

模型	Pre.	$\mathbf{mAP}\uparrow$	#P ↓	FLOPs↓	PL	BD	$_{\rm BR}$	GTF	SV	LV	$^{\rm SH}$	TC	BC	ST	SBF	$\mathbf{R}\mathbf{A}$	HA	SP	HC
单阶段																			
R3Det [9]	IN	76.47	41.9M	336G	89.80	83.77	48.11	66.77	78.76	83.27	87.84	90.82	85.38	85.51	65.57	62.68	67.53	78.56	72.62
CFA [127]	IN	76.67	-	-	89.08	83.20	54.37	66.87	81.23	80.96	87.17	90.21	84.32	86.09	52.34	69.94	75.52	80.76	67.96
DAFNe [128]	IN	76.95	-	-	89.40	86.27	53.70	60.51	82.04	81.17	88.66	90.37	83.81	87.27	53.93	69.38	75.61	81.26	70.86
SASM [129]	IN	79.17	-	-	89.54	85.94	57.73	78.41	79.78	84.19	89.25	90.87	58.80	87.27	63.82	67.81	78.67	79.35	69.37
AO2-DETR [130]	IN	79.22	74.3M	304G	89.95	84.52	56.90	74.83	80.86	83.47	88.47	90.87	86.12	88.55	63.21	65.09	79.09	82.88	73.46
S^2ANet [53]	IN	79.42	-	-	88.89	83.60	57.74	81.95	79.94	83.19	89.11	90.78	84.87	87.81	70.30	68.25	78.30	77.01	69.58
R3Det-GWD $[10]$	IN	80.23	41.9M	336G	89.66	84.99	59.26	82.19	78.97	84.83	87.70	90.21	86.54	86.85	73.47	67.77	76.92	79.22	74.92
RTMDet-R $[126]$	IN	80.54	52.3M	205G	88.36	84.96	57.33	80.46	80.58	84.88	88.08	90.90	86.32	87.57	69.29	70.61	78.63	80.97	79.24
R3Det-KLD $[55]$	IN	80.63	41.9M	336G	89.92	85.13	59.19	81.33	78.82	84.38	87.50	89.80	87.33	87.00	72.57	71.35	77.12	79.34	78.68
RTMDet-R $[126]$	со	81.33	52.3M	205G	88.01	86.17	58.54	82.44	81.30	84.82	88.71	90.89	88.77	87.37	71.96	71.18	81.23	81.40	77.13
两阶段																			
SCRDet $[131]$	IN	72.61	-	-	<u>89.98</u>	80.65	52.09	68.36	68.36	60.32	72.41	90.85	87.94	86.86	65.02	66.68	66.25	68.24	65.21
ViTDet $[132]$	IN	74.41	103.2M	502G	88.38	75.86	52.24	74.42	78.52	83.22	88.47	90.86	77.18	86.98	48.95	62.77	76.66	72.97	57.48
Rol Trans. [52]	IN	74.61	55.1M	200G	88.65	82.60	52.53	70.87	77.93	76.67	86.87	90.71	83.83	82.51	53.95	67.61	74.67	68.75	61.03
G.V. [12]	IN	75.02	41.1M	198G	89.64	85.00	52.26	77.34	73.01	73.14	86.82	90.74	79.02	86.81	59.55	70.91	72.94	70.86	57.32
${\rm CenterMap}~[133]$	IN	76.03	41.1M	198G	89.83	84.41	54.60	70.25	77.66	78.32	87.19	90.66	84.89	85.27	56.46	69.23	74.13	71.56	66.06
CSL [134]	IN	76.17	37.4M	236G	90.25	85.53	54.64	75.31	70.44	73.51	77.62	90.84	86.15	86.69	69.60	68.04	73.83	71.10	68.93
ReDet [8]	IN	80.10	-	-	88.81	82.48	60.83	80.82	78.34	86.06	88.31	90.87	88.77	87.03	68.65	66.90	79.26	79.71	74.67
DODet [135]	IN	80.62	-	-	89.96	85.52	58.01	81.22	78.71	85.46	88.59	90.89	87.12	87.80	70.50	71.54	82.06	77.43	74.47
AOPG [136]	IN	80.66	-	-	89.88	85.57	60.90	81.51	78.70	85.29	88.85	90.89	87.60	87.65	71.66	68.69	82.31	77.32	73.10
O-RCNN [11]	IN	80.87	41.1M	199G	89.84	85.43	61.09	79.82	79.71	85.35	88.82	90.88	86.68	87.73	72.21	70.80	$\underline{82.42}$	78.18	74.11
KFloU [137]	IN	80.93	58.8M	206G	89.44	84.41	$\underline{62.22}$	82.51	80.10	86.07	88.68	90.90	87.32	88.38	$\underline{72.80}$	71.95	78.96	74.95	75.27
RVSA [6]	MA	81.24	114.4M	414G	88.97	85.76	61.46	81.27	79.98	85.31	88.30	90.84	85.06	87.50	66.77	73.11	84.75	81.88	77.58
\star LSKNet-T	IN	<u>81.37</u>	21.0M	124G	89.14	84.90	61.78	83.50	81.54	85.87	88.64	90.89	88.02	87.31	71.55	70.74	78.66	79.81	78.16
\star LSKNet-S	IN	<u>81.64</u>	<u>31.0M</u>	<u>161G</u>	89.57	86.34	63.13	83.67	82.20	86.10	88.66	90.89	88.41	87.42	71.72	69.58	78.88	<u>81.77</u>	76.52
\star LSKNet-S*	IN	81.85	<u>31.0M</u>	<u>161G</u>	89.69	85.70	61.47	83.23	81.37	86.05	88.64	90.88	88.49	87.40	71.67	71.35	79.19	81.77	80.86

表 6: 在 FAIR1M-v1.0 数据集上与最先进模型的比较。*: 结果引用自 FAIR1M 论文 [38]。

模型	G. V.* [12]	RetinaNet* [138]	C-RCNN* [139]	F-RCNN* [140]	RoI Trans.* [52]	O-RCNN [11]	LSKNet-T	LSKNet-S
mAP(%)	29.92	30.67	31.18	32.12	35.29	45.60	46.93	47.87

4.2 定向目标和合成孔径雷达目标检测

4.2.1 目标检测数据集

为评估所提出模型在遥感检测任务中的适用 性,本文在4个具有挑战性的数据集上进行了实 验。这些数据集包括3个广泛使用的定向目标检 测数据集:HRSC2016 [37]、DOTA-v1.0 [36]和 FAIR1M-v1.0 [38],以及一个复杂且具有挑战性的 合成孔径雷达(SAR)数据集 SAR-Aircraft [28]。

DOTA-v1.0 [36] 由 2,806 张遥感图像组成,包含 188,282 个实例,涵盖 15 个类别:飞机 (PL)、 棒球场 (BD)、桥梁 (BR)、田径场 (GTF)、小 型车辆 (SV)、大型车辆 (LV)、船舶 (SH)、网 球场 (TC)、篮球场 (BC)、储罐 (ST)、足球场 (SBF)、环岛 (RA)、港口 (HA)、游泳池 (SP) 和直升机 (HC)。

HRSC2016 [37] 是一个专门用于船舶检测的 高分辨率遥感数据集,由 1,061 张图像组成,包含 2,976 个船舶实例。

FAIR1M-v1.0 [38] 是一个近期发布的遥感数 据集,包含 15,266 张高分辨率图像和超过 100 万 个实例。该数据集涵盖 5 个主类别和 37 个子类别 的目标。

SAR-Aircraft 数据集 [28] 是一个专为 SAR 模态目标检测收集的最新遥感数据集。与前述 3 个 RGB 模态数据集不同, SAR 数据集中的图像

表 7: 在 HRSC2016 数据集上与最先进模型的 比较。mAP (07/12): VOC 2007 [142]/2012 [143] 评价指标。

模型	Pre.	mAP(07)	mAP(12)	#P	FLOPs
DRN [54]	IN	-	92.70	-	-
CenterMap [133]	IN	-	92.80	41.1M	198G
Rol Trans. [52]	IN	86.20	-	$55.1 \mathrm{M}$	200G
G. V. [12]	IN	88.20	-	41.1M	198G
R3Det [9]	IN	89.26	96.01	41.9M	336G
DAL [141]	IN	89.77	-	$36.4\mathrm{M}$	216G
GWD [10]	IN	89.85	97.37	$47.4\mathrm{M}$	456G
S^2ANet [53]	IN	90.17	95.01	38.6M	198G
AOPG [136]	IN	90.34	96.22	-	-
ReDet [8]	IN	90.46	97.63	31.6M	-
O-RCNN [11]	IN	90.50	97.60	$41.1 \mathrm{M}$	199G
RTMDet [126]	$_{\rm CO}$	90.60	97.10	52.3M	205G
\star LSKNet-T	IN	90.54	<u>98.13</u>	21.0 M	124G
\star LSKNet-S	IN	90.65	98.46	$\underline{31.0M}$	<u>161G</u>

都为灰度图像。该数据集包含7个不同类别,分别 是A220、A320/321、A330、ARJ21、Boeing737、 Boeing787和其他。数据集由3,489张训练图像和 879张测试图像组成,总计16,463个飞机实例。

4.2.2 检测结果

在定向目标检测实验中,考虑到其出色的性能和效率,本文默认将 LSKNets 构建在 Oriented RCNN [11] 框架内。

DOTA-v1.0 数据集结果。本文将 LSKNet 与 20 种最先进的方法在 DOTA-v1.0 数据集上进 行了比较,结果如表 5所示。本文提出的 LSKNet-T、LSKNet-S 和 LSKNet-S* 分别达到了 81.37%、 81.64% 和 81.85% 的最优 mAP。值得注意的是, 性能优异的 LSKNet-S 在单个 RTX3090 GPU 上 处理 1024x1024 图像时,推理速度可达 18.1 FPS。

HRSC2016 数据集结果。本文在 HRSC2016 数据集上评估了 LSKNet 与 12 种最先进方法的 性能。表 7中的结果表明,本文提出的 LSKNet-S 在 PASCAL VOC 2007 [142] 和 VOC 2012 [143] 指标下分别达到了 **90.65%** 和 **98.46%** 的 mAP, 优于所有其他方法。

表 8	: SAR-Aircraft	测试集上的	mAP	结果。
-----	----------------	-------	-----	-----

RetinaNet [138] 2x	#P	\mathbf{mAP}_{50}	\mathbf{mAP}_{75}
ResNet-50 [144]	25.6M	0.469	0.324
PVT-Tiny [78]	$13.2 \mathrm{M}$	0.498	0.335
Res2Net-50 [145]	$25.7 \mathrm{M}$	0.528	0.339
Swin-T [102]	28.3M	0.586	0.346
ConvNeXt V2-N [146]	15.0M	0.589	0.350
VAN-B1 [89]	$13.4 \mathrm{M}$	0.603	0.375
\star LSKNet-T	4.3 M	0.582	0.354
\star LSKNet-S	14.4M	0.624	0.387
Cascade Mask RCNN [147] 2x	#P	\mathbf{mAP}_{50}	\mathbf{mAP}_{75}
ResNet-50 [144]	25.6M	0.483	0.339
PVT-Tiny [78]	13.2M	0.502	0.344
Res2Net-50 [145]	$25.7 \mathrm{M}$	0.544	0.372
ConvNeXt V2-N [146]	15.0M	0.581	0.428
Swin-T [102]	28.3M	0.596	0.416
VAN-B1 [89]	$13.4 \mathrm{M}$	0.604	0.457
* LSKNet-T	4.3 M	0.586	0.435
\star LSKNet-S	14.4M	0.614	0.458

FAIR1M-v1.0 数据集结果。本文将 LSKNet 与其他 6 种模型在 FAIR1M-v1.0 数据集上进行 了比较,结果如表 6所示。结果表明,本文提出的 LSKNet-T 和 LSKNet-S 表现出色,分别达到了 46.93% 和 47.87% 的最优 mAP 得分,显著超 越了其他所有模型。细粒度类别结果可参见补充 材料。

SAR-Aircraft 数据集结果。本文评估了所 提出的 LSKNets 与 5 种最先进的骨干网络在 Cascade Mask RCNN [147] 和 RetinaNet [138] 检测 框架下的性能。结果如表 8所示,清楚地表明本文 提出的 LSKNets 在 SAR 目标检测任务中提供了 显著且实质性的性能改进。

定量分析。在比较的模型中,使用原始 ViT 骨干网络的 ViTDet 具有最大的计算复杂度(相 比 LSKNet-T 高 4.0 倍的 FLOPs)和第二大的模 型规模(相比 LSKNet-T 多 4.9 倍的参数),但在 DOTA-v1.0 数据集的目标检测任务上表现不佳。 另一种基于 ViT 的模型变体 RVSA,以 ViTAE 为基础,融合了多尺度和二维局部性归纳偏置,在 建模图像特征方面比原始 ViT 骨干网络更为有效。尽管 RVSA 效果显著,但仍存在模型规模庞大(相比 LSKNet-T 多 5.4 倍的参数)和计算复杂度高(相比 LSKNet-T 高 3.3 倍的 FLOPs)的问题。这两种基于 ViT 的模型均无法超越轻量级的 LSKNet-T。

LSKNet 的优势还体现在 DOTA-v1.0 数据集中容 易混淆的类别上,如小型车辆(+2.49%)和船舶 (+3.59%)(表 5),以及 FAIR1M 数据集中需要大 量上下文信息的类别上,如交叉路口(+2.08%)、 环岛(+6.53%)和桥梁(+6.11%)(补充材料中 的表 S4)。这些结果进一步验证了本文提出的先 验 1和先验 2 的有效性,并证实了所提出的基础 骨干模型的有效性。

4.3 语义分割

4.3.1 分割数据集

遵循主流分割研究的做法 [13, 60],本文通过 在五个标准数据集上进行评估来验证所提出模型 在遥感分割任务中的有效性: Potsdam [29]、Vaihingen [30]、LoveDA [31]、UAVid [32] 和 GID [33] 数据集。

Potsdam [29] 是一个高分辨率语义分割数据 集,包含38张高分辨率图像。它由6个语义类别 组成:不透水表面、建筑物、低矮植被、树木、汽 车和一个背景类别(杂波)。

Vaihingen [30] 同样是一个高分辨的语义分割数据集,由 33 张高分辨率图像组成。其语义类别与 Potsdam 相同。

LoveDA [31] 是一个多尺度且复杂的遥感语 义分割数据集,包含 5,987 张 1024×1024 像素的 图像。其中,2522 张用于训练,1,669 张用于验证, 1,796 张用于在线测试。该数据集包含 7 个语义类 别:建筑物、道路、水体、裸地、森林、农田和背景。

UAVid [32] 是一个高分辨率且复杂的无人机 (UAV) 语义分割数据集。它包含 200 张训练图像、 70 张验证图像和 150 张在线测试图像。该数据集

表 9: Potsdam	测试集上的定量比较结果。	OA:
总体精度		

模型	$\mathbf{mF1}\uparrow$	$\mathbf{OA}\uparrow$	$\mathbf{mIOU}\uparrow$
ERFNet $[149]$	85.8	84.5	76.2
DABNet [150]	88.3	86.7	79.6
BiSeNet $[151]$	89.8	88.2	81.7
EaNet $[15]$	90.6	88.7	83.4
MARESU-Net [61]	90.5	89.0	83.9
DANet [14]	88.9	89.1	80.3
SwiftNet $[152]$	91.0	89.3	83.8
FANet [16]	91.3	89.8	84.2
ShelfNet [153]	91.3	89.9	84.4
ABCNet [17]	92.7	91.3	86.5
Segmenter $[154]$	89.2	88.7	80.7
BANet [60]	92.5	91.0	86.3
SwinUperNet $[102]$	92.2	90.9	85.8
UNetFormer [13]	92.8	91.3	86.8
\star LSKNet-T	<u>92.9</u>	<u>91.7</u>	86.7
\star LSKNet-S	93.1	92.0	87.2

由 8 个不同类别组成:建筑物、道路、树木、植 被、移动车辆、静止车辆、人类和其他。

GID [33] 数据集是一个中等分辨率的土地覆 盖分割数据集,地面采样距离(GSD)为4m,包 含150张7,200×6,800像素的图像。按照[148]的 方法,本研究从原始GID数据集中选择了15张 预定义图像,并将所有图像裁剪为256×256像素, 最终得到7,830张训练图像和3,915张测试图像。 该数据集包含六个语义类别:建成区、农田、森 林、草地、水体和其他。

4.3.2 分割结果

本文在上述 5 个数据集上对所提出的 LSKNet-T 和 LSKNet-S 模型与多个近期提出 的高水平模型进行了全面比较。对于 Potsdam、 Vaihingen、LoveDA 和 UAVid 数据集,由于 UNet-Former [13] 框架具有令人信服的性能且开源可用, LSKNet 被集成到该框架中。对于 GID 数据集, 本文使用 SegFormer 框架比较了各种骨干网络模 型。具体而言,本研究在 Potsdam 数据集上与 14 个模型进行了比较 (表 9),在 Vaihingen 数据集 上与 16 个模型进行了比较 (表 10),在 LoveDA

表 10: Vaihingen 测试集上的定量比较结果。

模型	$\mathbf{mF1}\uparrow$	$\mathbf{OA}\uparrow$	$\mathbf{mIOU}\uparrow$
PSPNet [155]	79.0	87.7	68.6
ERFNet $[149]$	78.9	85.8	69.1
DANet [14]	79.6	88.2	69.4
DABNet [150]	79.2	84.3	70.2
Segmenter [154]	84.1	88.1	73.6
BOTNet [156]	84.8	88.0	74.3
FANet [16]	85.4	88.9	75.6
BiSeNet $[151]$	84.3	87.1	75.8
DeepLabV3+ $[157]$	87.4	89.0	-
ShelfNet [153]	87.5	89.8	78.3
MARESU-Net [61]	87.7	90.1	78.6
EaNet $[15]$	87.7	89.7	78.7
SwiftNet $[152]$	88.3	90.2	79.6
ABCNet [17]	89.5	90.7	81.3
BANet [60]	89.6	90.5	81.4
UNetFormer [13]	90.4	91.0	82.7
\star LSKNet-T	<u>91.7</u>	93.6	84.9
\star LSKNet-S	91.8	93.6	85.1

数据集上与 13 个模型进行了比较(表 11),在 UAVid 数据集上与 16 个模型进行了比较(表 12), 在 GID 数据集上与 6 个骨干网络模型进行了比较 (表 13)。值得注意的是,本文提出的 LSKNet-T 和 LSKNet-S 模型表现出色,在所有数据集的大 多数主要指标上均超越了其他最先进的方法。

4.4 变化检测

4.4.1 变化检测数据集

遵循主流变化检测研究的做法 [68, 71, 176], 本文在以下两个标准数据集上进行评估来验证 所提出模型在遥感变化检测任务中的有效性: LEVIR-CD [34] 和 S2Looking [35]。

LEVIR-CD [34] 包含 637 对来自 Google Earth 的双时相图像,每张图像的尺寸为 1024×1024 像素,地面采样距离(GSD)为0.5米。 该数据集标注了 31,333 个二元变化实例。

S2Looking [35] 由全球光学卫星拍摄的 5,000 对双时相图像组成。每张图像的尺寸为 1024×1024 像素,GSD 范围在 0.5 至 0.8 米之间。该数据集 标注超过 65,920 个二元变化实例。

4.4.2 变化检测结果

在变化检测实验中,由于 Changer [68] 框 架具有令人信服的性能且开源可用,LSKNet 默 认构建于该框架之上。本文在 LEVIR-CD 和 S2Looking 数据集上对所提出的 LSKNet-T 和 LSKNet-S 模型与 17 个近期高性能模型进行了全 面比较。表 14中的结果证实,所提出的 LSKNet-T 和 LSKNet-S 模型表现出色,在所有数据集的 主要指标 (F1 和 IoU) 上均超越了其他最先进的 方法。

4.5 消融分析

本节将报告在 DOTA-v1.0 测试集上进行的 消融实验结果。选择 DOTA-v1.0 数据集进行消融 研究主要基于两个因素:首先,目标检测是一项 实用且具有挑战性的任务,而 DOTA-v1.0 数据集 提供了多样化且复杂的目标和场景用于评估;其 次,众多可用模型的存在使得全面比较成为可能, 从而能够对本文提出方法的有效性进行深入评估。 在消融研究中,为了提高实验效率,本文采用了 100 轮的骨干网络预训练计划(表 15、16、17、 19、18)。

大核分解。确定分解的核数量是 LSK 模块的 一个关键选择。本文遵循公式(1)来配置分解后的 核。表 15展示了在理论感受野固定为 29 的情况 下,对大核分解数量进行消融研究的结果。结果 表明,将大核分解为两个深度可分离大核可以在 速度和精度之间取得良好的平衡,在 FPS (每秒 帧数)和 mAP (平均精度均值)方面都达到了最 佳性能。

核感受野大小。基于表 15中的评估结果,本 文发现将大核分解为两个**串联**的深度可分离卷积 核是最优的策略。此外,表 16显示,过小或过大 的感受野都会影响 LSKNet 的性能,而约为 23 的 感受野大小被确定为最有效的选择。

SKNet 和不同注意力选择类型的比较。 LSKNet 与 SKNet 有两个关键区别。首先,本文 提出的选择机制依赖于通过核分解实现的一序列

模型	mIoU ↑	背景	建筑物	道路	水体	裸地	森林	农田
Segmenter [154]	47.1	38.0	50.7	48.7	77.4	13.3	43.5	58.2
SegFormer $[158]$	47.4	43.1	52.3	55.0	70.7	10.7	43.2	56.8
DeepLabV3+ [157]	47.6	43.0	50.9	52.0	74.4	10.4	44.2	58.5
UNet [159]	47.6	43.1	52.7	52.8	73.0	10.3	43.1	59.9
UNet++ [160]	48.2	42.9	52.6	52.8	74.5	11.4	44.4	58.8
SemanticFPN $[161]$	48.2	42.9	51.5	53.4	74.7	11.2	44.6	58.7
FarSeg [162]	48.2	43.1	51.5	53.9	76.6	9.8	43.3	58.9
PSPNet $[155]$	48.3	44.4	52.1	53.5	76.5	9.7	44.1	57.9
FactSeg $[163]$	48.9	42.6	53.6	52.8	76.9	16.2	42.9	57.5
TransUNet $[164]$	48.9	43.0	56.1	53.7	78.0	9.3	44.9	56.9
BANet $[60]$	49.6	43.7	51.5	51.1	76.9	16.6	44.9	62.5
HRNet [165]	49.8	44.6	55.3	57.4	78.0	11.0	45.3	60.9
SwinUperNet $[102]$	50.0	43.3	54.3	54.3	78.7	14.9	45.3	59.6
DC-Swin [166]	50.6	41.3	54.5	56.2	78.1	14.5	47.2	62.4
UNetFormer [13]	52.4	44.7	58.8	54.9	79.6	20.1	46.0	<u>62.5</u>
Hi-ResNet [167]	52.5	46.7	58.3	55.9	80.1	17.0	46.7	62.7
\star LSKNet-T	53.2	46.4	59.5	57.1	79.9	21.8	46.6	61.4
\star LSKNet-S	54.0	46.7	59.9	58.3	80.2	24.6	46.4	61.8

表 11: LoveDA 测试集上的定量比较结果。

表 12: UAVid 测试集上的定量比较结果。

模型	$mIoU\uparrow$	其他	建筑物	道路	树木	植被	移动车辆	静止车辆	人类
MSD [32]	57.0	57.0	79.8	74.0	74.5	55.9	62.9	32.1	19.7
CANet [168]	63.5	66.0	86.6	62.1	79.3	78.1	47.8	68.3	19.9
DANet [14]	60.6	64.9	85.9	77.9	78.3	61.5	59.6	47.4	9.1
SwiftNet [152]	61.1	64.1	85.3	61.5	78.3	76.4	51.1	62.1	15.7
BiSeNet [151]	61.5	64.7	85.7	61.1	78.3	77.3	48.6	63.4	17.5
MANet [61]	62.6	64.5	85.4	77.8	77.0	60.3	67.2	53.6	14.9
ABCNet [17]	63.8	67.4	86.4	81.2	79.9	63.1	69.8	48.4	13.9
Segmenter $[154]$	58.7	64.2	84.4	79.8	76.1	57.6	59.2	34.5	14.2
SegFormer $[158]$	66.0	66.6	86.3	80.1	79.6	62.3	72.5	52.5	28.5
BANet [60]	64.6	66.7	85.4	80.7	78.9	62.1	69.3	52.8	21.0
BOTNet $[156]$	63.2	64.5	84.9	78.6	77.4	60.5	65.8	51.9	22.4
CoaT [169]	65.8	69.0	88.5	80.0	79.3	62.0	70.0	59.1	18.9
UNetFormer [13]	67.8	68.4	87.4	81.5	80.2	63.5	73.6	56.4	31.0
\star LSKNet-T	<u>69.3</u>	69.6	87.9	82.8	80.6	64.8	77.3	60.2	<u>31.3</u>
\star LSKNet-S	70.0	69.6	84.8	82.9	80.9	<u>65.5</u>	76.8	<u>64.9</u>	31.8

大核的显式特征流动,这与大多数现有基于注意 力方法的做法不同。相比之下,SKNet 采用了并 行分解技术。其次,LSKNet 在空间维度上自适 应地聚合大核信息,而非SKNet 或LSKNet-CS 所使用的通道维度。这种设计对遥感任务而言更 为直观和有效,因为通道选择无法捕捉图像空间 中不同目标的空间尺度变化。此外,本文还评估 了一种同时利用空间和通道选择的 LSKNet 变体。 表 16中的实验结果表明,在检测任务中,空间信 息起着更为关键的作用。然而,同时包含空间和通

表 13: GID 测试集上的定量比较结果。

骨干网络	$\mathbf{mF1}\uparrow$	$\mathbf{OA}\uparrow$	$mIoU\uparrow$
ConvNext-v2-N [146]	75.1	78.9	62.5
ResNet-50 [144]	75.3	80.0	64.1
Swin-T [102]	77.8	80.8	65.6
ResNest-50 $[57]$	79.7	80.3	67.2
VAN-S [89]	80.2	82.1	68.2
MSCAN-S [90]	80.4	81.4	68.4
\star LSKNet-T	79.4	81.5	67.2
\star LSKNet-S	83.2	82.3	69.6

道选择可能会增加模型优化的难度,导致性能略 有下降。补充材料中详细比较了 SKNet、LSKNet、 LSKNet-CS(通道选择版本)和LSKNet-SCS(空 间和通道选择版本)的模块架构概念。

空间选择中的池化层。本文进行了实验以确 定空间选择的最佳池化层选择,结果如表 17所示。 实验表明,在 LSK 模块的空间选择模块中同时使 用最大池化和平均池化可以在不牺牲推理速度的 情况下获得最佳性能。

LSKNet 骨干网络在不同检测框架下的性能。为验证所提出的 LSKNet 骨干网络的通用性和有效性,本文在多种遥感检测框架下评估了其性能,包括两阶段框架 O-RCNN [11] 和 RoI Transformer [52],以及单阶段框架 S²A-Net [53] 和 R3Det [9]。表 19中的结果显示,与 ResNet-18 相比,本文提出的 LSKNet-T 骨干网络显著提高了检测性能,同时仅使用了 38% 的参数量和 50%的 FLOPs。这些发现凸显了所提出的 LSKNet 骨干网络轻量化且功能强大的通用性特征。

与其他大核/选择性注意力骨干网络的比较。 本文还将 LSKNet 与 9 种流行的大核或选择性注 意力骨干网络进行了比较。如表 18所示,使用原 始 ViT [41] 骨干网络的 ViTDet [132] 在所比较的 模型中具有最大的模型规模和计算复杂度,但在 所有任务中表现均不佳。表 5中的观察结果显示, 它在具有明显细粒度特征的目标(如球场和直升 机)上表现尤其差。这表明全局上下文信息建模 对遥感场景并不高效。在相似或更少的模型规模 和复杂度预算下,本文提出的 LSKNet 在遥感目 标检测 (DOTA-v1.0)、分割 (Vaihingen) 和变化 检测 (LEVIR-CD) 任务上均优于其他所有模型, 突显了其在捕获和处理遥感图像语义特征方面的 有效性。

5 分析

本节针对目标检测任务进行分析,因为实例 级信息对理解模型的整体行为具有重要意义。

检测结果可视化。图 5展示了检测结果和 Eigen-CAM [178] 的可视化示例。LSKNet 能够捕 获与检测目标相关的合理范围的上下文信息,从 而在各种困难情况下表现更好,这验证了本文的 先验假设 1)。相比之下,ResNet 通常只能捕获有 限范围的上下文信息,而 ViTDet 虽然能捕获大 范围但粗糙的空间信息,在目标小而密集时难以 建模细粒度细节。这两种模型在具有挑战性的场 景中均表现有限。

不同目标的相对上下文范围。为研究每个目标类别的感受野相对范围,本文定义了 *R_c* 作为类别 *c* 的预期选择性感受野面积与真实边界框面积之比:

$$R_{c} = \frac{\sum_{i=1}^{I_{c}} A_{i}/B_{i}}{I_{c}}, \qquad (11)$$
$$A_{i} = \sum_{d=1}^{D} \sum_{n=1}^{N} |\widetilde{\mathbf{S}\mathbf{A}}_{n}^{d} \cdot RF_{n}|, \ B_{i} = \sum_{j=1}^{J_{i}} Area(\mathrm{GT}_{j}),$$

$$\sum_{j=1}^{j=1}$$
(12)

其中, *I_c* 是仅包含目标类别*c* 的图像数量。*A_i* 是 输入图像*i* 在所有 LSK 块中空间选择激活的总 和, *D* 是 LSKNet 中的块数, *N* 是 LSK 模块中 分解大核的数量。*B_i* 是所有 *J_i* 个标注的定向目 标边界框(真实值)的总像素面积。图 6中归一化 的 *R_c* 直观地展示了不同目标类别所需的相对上 下文范围。结果表明,桥梁类别相比其他类别需 要更多的额外上下文信息,这主要是由于其特征 与道路相似,且需要上下文线索来确定其是否被 水包围。同样,环岛类别也有相对较高的 *R_c* 值, 为 0.57。相反,球场类别的 *R_c* 值相对较低,均低 于 0.1。由于其独特的纹理属性,特别是场地边界

#5 开1		LEVIR-C	D [<mark>34</mark>]		S2Looking [35]				
快坐	$\mathbf{Precision}~\uparrow$	$\mathbf{Recall} \uparrow$	$\mathbf{F1}\uparrow$	$\mathbf{IoU}\uparrow$	$\mathbf{Precision}~\uparrow$	$\mathbf{Recall} \uparrow$	$F1\uparrow$	$\mathbf{IoU}\uparrow$	
FC-EF [63]	86.91	80.17	83.40	71.53	81.36	8.95	7.65	8.77	
FC-Siam-Conc [63]	91.99	76.77	83.69	71.96	83.29	15.76	13.19	15.28	
FC-Siam-Di [63]	89.53	83.31	86.31	75.92	68.27	18.52	13.54	17.05	
STANet [34]	83.81	91.00	87.26	77.40	38.75	56.49	45.97	29.84	
DTCDSCN [170]	88.53	86.83	87.67	78.05	68.58	49.16	57.27	40.12	
HANet [171]	91.21	89.36	90.28	82.27	61.38	55.94	58.54	41.38	
CDNet [172]	91.60	86.50	89.00	80.14	67.48	54.93	60.56	43.43	
CDMC [173]	93.09	88.07	90.51	82.67	64.88	58.15	61.34	44.23	
IFNet [67]	91.17	90.51	90.83	83.22	66.46	61.95	64.13	47.19	
SNUNet [64]	92.45	90.17	91.30	83.99	71.94	56.34	63.19	46.19	
BiT [70]	91.97	88.62	90.26	82.26	74.80	55.56	63.76	46.80	
HCGMNet $[174]$	92.96	90.61	91.77	84.79	72.51	57.06	63.87	46.91	
ChangeFormer [65]	92.59	89.68	91.11	83.67	72.82	56.13	63.39	46.41	
C2FNet [175]	<u>93.69</u>	89.47	91.83	84.89	74.84	54.14	62.83	45.80	
CGNet [176]	93.15	90.90	92.01	85.21	70.18	59.38	64.33	47.41	
DiFormer [71]	93.75	90.59	92.15	85.44	72.39	61.19	66.31	49.60	
Changer-MiT_b0 $[68]$	93.61	90.56	92.06	85.29	73.01	62.04	67.08	50.47	
\star LSKNet-T	92.56	91.83	92.19	85.51	70.44	64.46	67.32	50.74	
\star LSKNet-S	93.34	91.23	92.27	85.65	71.90	63.64	67.52	50.96	

表 14: LEVIR-CD 和 S2Looking 数据集上变化检测的定量比较结果。

表 15: 分解大型卷积核数量对推理 FPS 和 mAP 的影响,理论感受野为 29。将大型卷积核分解为 两个深度可分离卷积核可以在速度和精度方面达 到最佳性能。

(k, d) 序列	\mathbf{RF}	Num.	\mathbf{FPS}	mAP $(\%)$
(29, 1)	29	1	18.6	80.66
$(5, 1) \longrightarrow (7, 4)$	29	2	20.5	80.91
$(3, 1) \longrightarrow (5, 2) \longrightarrow (7, 3)$	29	3	19.2	80.77

线,它们只需要最少的上下文信息。这与认知相符,进一步支持了本文的先验假设 2),即不同目标类别所需的上下文信息相对范围差异很大。

核选择机制。本文进一步研究了 LSKNet 中的核选择机制。对于目标类别 c, LSKNet-T 结构 块的核选择差异 ΔA_c (即大核选择 – 小核选择) 定义如下:

$$\Delta A_c = |\mathbf{S} \mathbf{A}_{larger} - \mathbf{S} \mathbf{A}_{smaller}| .$$
 (13)

表 16: LSKNet 关键设计组件的有效性,大型卷积核被分解为两个深度可分离卷积核序列。CS:通道选择; SS:空间选择 (本文方法)。当使用具有空间选择的合理大感受野时,LSKNet 达到最佳性能。

$(k_1,$	$d_1)$	(k_2, d_2)	Flow	\mathbf{CS}	SS	\mathbf{RF}	\mathbf{FPS}	mAP	
(3,	1)	(5, 2)	Series	-	-	11	22.1	80.80	
(5,	1)	(7, 3)	Series	-	-	23	21.7	80.94	
(5,	1)	(7, 4)	Series	-	-	29	20.5	80.91	
(7,	1)	(9, 4)	Series	-	-	39	21.3	80.84	
(3,	1)	(5, 1)	Parallel	\checkmark	-	5	23.3	80.19	(SKNet [59])
(5,	1)	(7, 3)	Series	\checkmark	-	23	19.6	80.57	(LSKNet-CS)
(5,	1)	(7, 3)	Series	\checkmark	\checkmark	23	18.6	80.82	(LSKNet-SCS)
(5,	1)	(7, 3)	Series	-	\checkmark	23	20.7	81.31	(LSKNet)

图 7展示了三个典型类别(桥梁、环岛和足球场) 在所有图像上的归一化 ΔA_c ,以及每个 LSKNet-T 块的 ΔA_c 。如预期所示,桥梁类别在所有块中 的 ΔA_c 平均比环岛高约 30%,而环岛又比足球场 高约 70%。这与常识相符,即足球场确实不需要

(a) Robustness to obstacles

(b) Accurate Object Classification

(c) Accurate Object Localization

图 5: Eigen-CAM 可视化: 基于 ResNet-50、ViTDet 和 LSKNet-S 的 Oriented RCNN 检测框架。本 文提出的 LSKNet 能够建模合理长程的上下文信息,在各种困难情况下表现更佳。

表 17: 关于本文提出的 LSK 模块中最大和平均 池化对空间选择有效性的消融研究。结果表明, 同时使用两种池化方法可获得最佳效果。

Poo	ling	FPS	$mAP(\emptyset)$			
Max.	Avg.	FFS	IIIAI (70)			
\checkmark		20.7	81.23			
	\checkmark	20.7	81.12			
\checkmark	\checkmark	20.7	81.31			

大量上下文信息,因为其自身的纹理特征已经足 够独特和具有辨识度。

本文还意外发现了 LSKNet 在网络深度上的 另一种选择模式: LSKNet 通常在浅层使用较大 的核,而在高层使用较小的核。第一层块的平均 ΔA_c 为 0.78,第二和第三层块为 0.40,最后一层 块仅为 0.33。这表明网络倾向于在低层快速聚焦 于捕获大感受野的信息,以便高层语义能包含足 够的感受野,从而实现更好的区分。

图 6: DOTA-v1.0 数据集中各目标类别的**预期选择性感受野面积与真实边界框面积的归一化比率** *R_c*。不同目标类别所需的相对上下文范围差异显著。本文使用公式(8)(即空间激活)可视化训练 后的 LSKNet 模型的感受野。

空间激活图可视化。图 8展示了 DOTA-v1.0 数据集中更多目标类别的空间激活图示例,其中 激活图是利用训练后的 LSKNet 模型通过公式(8)

表 18: LSKNet-S 与其他(大型卷积核或动态/选择性注意力)骨干网络在遥感目标检测(DOTA-v1.0)、 分割(Vaihingen)和变化检测(LEVIR-CD)任务上的比较。在相似或更低的复杂度预算下,本文提 出的 LSKNet 达到了最佳的 mAP。

米回	模型	-#D	-#D Elana DOTA-v1.0			Vaihingen			LEVIR-CD				
- 矢刑	骨干网络	# ₽	riops	mAP	@50	@75	F1	OA	mIoU	Р.	R.	F1	\mathbf{IoU}
基准模型	ResNet-18	11.2M	38.1G	50.54	79.27	55.33	90.15	92.62	82.47	92.97	90.61	91.77	84.80
	ViTDet [132]	$86.6 \mathrm{M}$	394.9G	45.60	74.41	49.39	81.01	83.74	54.91	80.72	90.59	85.37	74.48
	ConvNeXt v2-N [146]	15.0M	51.2G	52.91	80.81	58.58	89.13	92.15	81.17	93.12	89.73	91.39	84.15
大	Swin-T [102]	28.3M	91.1G	51.54	80.81	56.71	90.74	93.01	83.40	93.04	90.25	91.63	84.55
核	MSCAN-S [90]	$13.1\mathrm{M}$	45.0G	52.52	81.12	57.92	91.16	93.04	84.10	93.39	91.14	92.25	85.62
	VAN-B1 [89]	$13.4\mathrm{M}$	52.7G	52.69	81.15	58.11	91.30	93.12	84.41	93.31	91.20	92.24	85.60
-1-大 /	ResNeSt-14 [57]	8.6M	57.9G	49.79	79.51	53.41	90.31	92.84	82.72	92.47	90.38	91.41	84.18
列心/	SCNet-18 [58]	14.0M	50.7G	49.91	79.69	53.55	90.50	92.97	83.04	92.03	91.27	91.65	84.58
达 伴 性 対 辛 士	DCN-Res50 [177]	26.2M	121.2G	49.26	79.74	52.97	90.93	93.07	83.72	92.84	90.67	91.74	84.74
社思力	SKNet-26 [59]	14.5M	58.5G	51.53	80.67	56.51	90.83	93.01	83.56	93.09	91.09	92.08	85.32
本文	* LSKNet-S	14.4M	54.4G	53.32	81.48	58.83	91.81	93.61	85.12	93.44	91.13	92.27	85.65

表 19: LSKNet-T 与 ResNet-18 作为骨干网 络在 DOTA-v1.0 数据集上不同检测框架中的比

较。LSKNet-T 在各种框架中均显著优于 ResNet-18, 实现了更高的 mAP。

框架	$\operatorname{ResNet-18}$	\star LSKNet-T
ORCNN [11]	79.27	81.31 (+2.04)
RoI Trans. [52]	78.32	80.89 (+2.57)
S^2A -Net [53]	76.82	80.15 (+3.33)
R3Det [9]	74.16	78.39 (+4.23)
#P (backbone only)	11.2M	4.3M (-62%)
FLOPs (backbone only)	38.1G	19.1G (-50%)

(即空间激活)计算得到。目标类别按照图 6所示 的预期选择性感受野面积与真实边界框面积之比 从左上到右下依次递减排列。空间激活图可视化 结果进一步证实了模型的行为与本文挖掘出的两 个先验假设和上述分析相一致,从而验证了所提 出机制的有效性。

6 结论

本 文 提 出 了 轻 量 级 自 适 应 大 核 网 络 (LSKNet),作为遥感图像分析下游任务(如场景分 类、目标检测和语义分割)的新骨干网络。LSKNet 专门设计用于建模遥感图像的固有特征:更广泛

化核选择差异。B_i_j表示第 i 阶段的第 j 个 LSK 块。较大的值表示对更广泛上下文的依赖。

和可适应的上下文理解。通过采用大空间感受野, LSKNet 能够有效捕获和建模遥感图像中不同目 标类型所呈现的多样化上下文细节。大量实验表 明,本文提出的轻量级模型在竞争激烈的遥感基 准测试中达到了最先进的性能。本文进行的大量 综合分析验证了所提出轻量级模型的有效性和重 要性。

致谢

本研究得到了国家自然科学基金青年科学基金(批准号: 62206134、62361166670、62276145、62176130、62225604、62301261)、中央高校基本科

图 8: DOTA-v1.0 数据集中更多目标类别的感受野激活图,其中本文使用公式(8)(即空间激活)可视化 训练后的 LSKNet 模型的激活图。

研业务费(南开大学,070-63233084、070-63233089) 以及天津市视觉计算与图像处理重点实验室的 支持。计算资源由南开大学超级计算中心提供支 持,同时得到了中国博士后科学基金(批准号: 2021M701727)的资助。

数据可用性声明

公开存储库中的可用数据:

Imagenet 数据集可在以下网址获取: https: //www.image-net.org/

UCM 数据集可在以下网址获取: http://weegee.vision.ucmerced.edu/datasets/ landuse.html

AID 数据集可在以下网址获取: https:// captain-whu.github.io/AID/

NWPU 数据集可在以下网址获取: https:// www.tensorflow.org/datasets/catalog/resisc45

MillionAID 数据集可在以下网址获取: https: //captain-whu.github.io/DiRS/

DOTA 数据集可在以下网址获取: https:// captain-whu.github.io/DOTA/dataset.html FAIR1M-v1.0 数据集可在以下网址获取: https://www.gaofen-challenge.com/benchmark

SAR-Aircraft 数据集可在以下网址获取: https://radars.ac.cn/web/data/getData? dataType=SARDataset_en

Potsdam 和 Vaihingen 数据集可在以 下网址获取: https://www.isprs.org/education/ benchmarks/UrbanSemLab/default.aspx

LoveDA 数据集可在以下网址获取: https:// codalab.lisn.upsaclay.fr/competitions/421

UAVid 数据集可在以下网址获取: https://uavid.nl/

GID 数据集可在以下网址获取: https:// x-ytong.github.io/project/GID.html

LEVIR-CD 数据集可在以下网址获取: https: //justchenhao.github.io/LEVIR/

S2Looking 数据集可在以下网址获取: https: //github.com/S2Looking/Dataset

参考文献

 Chen, S.-B., Wei, Q.-S., Wang, W.-Z., Tang, J., Luo, B., Wang, Z.-Y.: Remote sensing scene classification via multi-branch local attention network. TIP (2022)

- [2] Zhao, Q., Lyu, S., Li, Y., Ma, Y., Chen, L.: Mgml: Multigranularity multilevel feature ensemble network for remote sensing scene classification. IEEE Transactions on Neural Networks and Learning Systems (2022)
- [3] Zhao, Q., Ma, Y., Lyu, S., Chen, L.: Embedded self-distillation in compact multibranch ensemble network for remote sensing scene classification. TGRS (2022)
- [4] Li, F., Feng, R., Han, W., Wang, L.: Highresolution remote sensing image scene classification via key filter bank based on convolutional neural network. TGRS (2020)
- [5] Wang, D., Zhang, J., Du, B., Xia, G.-S., Tao, D.: An empirical study of remote sensing pretraining. TGRS (2022)
- [6] Wang, D., Zhang, Q., Xu, Y., Zhang, J., Du, B., Tao, D., Zhang, L.: Advancing plain vision transformer towards remote sensing foundation model. TGRS (2022)
- [7] Sun, X., Wang, P., Lu, W., Zhu, Z., Lu, X., He, Q., Li, J., Rong, X., Yang, Z., Chang, H., He, Q., Yang, G., Wang, R., Lu, J., Fu, K.: Ringmo: A remote sensing foundation model with masked image modeling. TGRS (2023)
- [8] Han, J., Ding, J., Xue, N., Xia, G.-S.: ReDet: A rotation-equivariant detector for aerial object detection. In: CVPR (2021)
- [9] Yang, X., Liu, Q., Yan, J., Li, A.: R3Det: Refined single-stage detector with feature refinement for rotating object. CoRR

(2019)

- [10] Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q.: Rethinking rotated object detection with Gaussian Wasserstein distance loss. In: ICML (2021)
- [11] Xie, X., Cheng, G., Wang, J., Yao, X., Han, J.: Oriented R-CNN for object detection. In: ICCV (2021)
- [12] Xu, Y., Fu, M., Wang, Q., Wang, Y., Chen, K., Xia, G.-S., Bai, X.: Gliding vertex on the horizontal bounding box for multi-oriented object detection. TPAMI (2021)
- [13] Wang, L., Li, R., Zhang, C., Fang, S., Duan, C., Meng, X., Atkinson, P.M.: UNet-Former: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing (2022)
- [14] Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., Lu, H.: Dual attention network for scene segmentation. In: CVPR (2019)
- [15] Zheng, X., Huan, L., Xia, G.-S., Gong, J.: Parsing very high resolution urban scene images by learning deep convnets with edgeaware loss. ISPRS Journal of Photogrammetry and Remote Sensing (2020)
- [16] Hu, P., Perazzi, F., Heilbron, F.C., Wang, O., Lin, Z., Saenko, K., Sclaroff, S.: Realtime semantic segmentation with fast attention. IEEE Robotics and Automation Letters (2020)
- [17] Li, R., Zheng, S., Zhang, C., Duan, C.,

Wang, L., Atkinson, P.M.: ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of fine-resolution remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing (2021)

- [18] Chen, Y., Yuan, X., Wu, R., Wang, J., Hou, Q., Cheng, M.-M.: YOLO-MS: Rethinking multi-scale representation learning for realtime object detection. arXiv (2023)
- [19] Zhang, W., Jiao, L., Li, Y., Huang, Z., Wang, H.: Laplacian feature pyramid network for object detection in vhr optical remote sensing images. TGRS (2022)
- [20] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., Lo, W.-Y., et al.: Segment anything. In: ICCV (2023)
- [21] Liu, H., Li, C., Wu, Q., Lee, Y.J.: Visual instruction tuning. NeurIPS (2024)
- [22] Chen, K., Liu, C., Chen, H., Zhang, H., Li, W., Zou, Z., Shi, Z.: Rsprompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model. TGRS (2024)
- [23] Kuckreja, K., Danish, M.S., Naseer, M., Das, A., Khan, S., Khan, F.S.: Geochat: Grounded large vision-language model for remote sensing. arXiv (2023)
- [24] Li, Y., Hou, Q., Zheng, Z., Cheng, M.-M., Yang, J., Li, X.: Large selective kernel network for remote sensing object detection. In: ICCV (2023)
- [25] Yang, Y., Newsam, S.: Bag-of-visual-words

and spatial extensions for land-use classification. In: Proceedings of the International Conference on Advances in Geographic Information Systems (2010)

- [26] Xia, G.-S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X.: AID: A benchmark data set for performance evaluation of aerial scene classification. TGRS (2017)
- [27] Cheng, G., Han, J., Lu, X.: Remote sensing image scene classification: Benchmark and state of the art. Proceedings of the IEEE (2017)
- [28] Zhirui, W., Sun, X.: SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset. https://radars.ac.cn/web/data/getData? dataType=SARDataset_en (2023)
- [29] Photogrammetry, T.I.S., (ISPRS),
 R.S.: 2D Semantic Labeling Contest
 Potsdam. https://www.isprs.org/
 education/benchmarks/UrbanSemLab/
 2d-sem-label-potsdam.aspx (2022)
- [30] ISPRS: 2D Semantic Labeling -Vaihingen. https://www.isprs.org/ education/benchmarks/UrbanSemLab/ 2d-sem-label-vaihingen.aspx (2022)
- [31] Wang, J., Zheng, Z., Ma, A., Lu, X., Zhong, Y.: LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation. arXiv (2021)
- [32] Lyu, Y., Vosselman, G., Xia, G.-S., Yilmaz, A., Yang, M.Y.: UAVid: A semantic segmentation dataset for uav imagery. ISPRS Journal of Photogrammetry and Remote

Sensing (2020)

- [33] Tong, X.-Y., Xia, G.-S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L.: Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment (2020)
- [34] Chen, H., Shi, Z.: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection. Remote Sensing (2020)
- [35] Shen, L., Lu, Y., Chen, H., Wei, H., Xie, D., Yue, J., Chen, R., Lv, S., Jiang, B.: S2looking: A satellite side-looking dataset for building change detection. Remote Sensing (2021)
- [36] Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L.: DOTA: A large-scale dataset for object detection in aerial images. In: CVPR (2018)
- [37] Liu, Z., Wang, H., Weng, L., Yang, Y.: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. TGRS Letters (2016)
- [38] Sun, X., Wang, P., Yan, Z., Xu, F., Wang, R., Diao, W., Chen, J., Li, J., Feng, Y., Xu, T., Weinmann, M., Hinz, S., Wang, C., Fu, K.: FAIR1M: A benchmark dataset for fine-grained object recognition in highresolution remote sensing imagery. ISPRS Journal of Photogrammetry and Remote Sensing (2022)
- [39] Su, Z., Zhang, J., Wang, L., Zhang, H.,

Liu, Z., Pietikäinen, M., Liu, L.: Lightweight pixel difference networks for efficient visual representation learning. TPAMI (2023)

- [40] Sun, S., Zhi, S., Liao, Q., Heikkilä, J., Liu,
 L.: Unbiased scene graph generation via two-stage causal modeling. TPAMI (2023)
- [41] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. In: ICLR (2021)
- [42] Deng, P., Xu, K., Huang, H.: When CNNs meet vision transformer: A joint framework for remote sensing scene classification. TGRS Letters (2022)
- [43] Bazi, Y., Bashmal, L., Rahhal, M.M.A., Dayil, R.A., Ajlan, N.A.: Vision transformers for remote sensing image classification. Remote Sensing (2021)
- [44] Zhang, Q., Xu, Y., Zhang, J., Tao, D.: Vitaev2: Vision transformer advanced by exploring inductive bias for image recognition and beyond. IJCV (2023)
- [45] Long, Y., Xia, G.-S., Li, S., Yang, W., Yang, M.Y., Zhu, X.X., Zhang, L., Li, D.: On creating benchmark dataset for aerial image interpretation: Reviews, guidances, and million-aid. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2021)
- [46] Zaidi, S.S.A., Ansari, M.S., Aslam, A.,

Kanwal, N., Asghar, M., Lee, B.: A survey of modern deep learning based object detection models. Digital Signal Processing (2022)

- [47] Mei, J., Zheng, Y.-B., Cheng, M.-M.: D2ANet: Difference-aware attention network for multi-level change detection from satellite imagery. Computational Visual Media (2023)
- [48] Sun, X., Tian, Y., Lu, W., Wang, P., Niu, R., Yu, H., Fu, K.: From single- to multimodal remote sensing imagery interpretation: a survey and taxonomy. Science China Information Sciences (2023)
- [49] Zhang, W., Deng, W., Cui, Z., Liu, J., Jiao, L.: Object knowledge distillation for joint detection and tracking in satellite videos. TGRS (2024)
- [50] Zhang, W., Jiao, L., Liu, F., Yang, S., Liu, J.: Dfat: Dynamic feature-adaptive tracking. IEEE Transactions on Circuits and Systems for Video Technology (2023)
- [51] Li, Y., Li, X., Li, W., Hou, Q., Liu, L., Cheng, M.-M., Yang, J.: Sardet-100k: Towards open-source benchmark and toolkit for large-scale sar object detection. arXiv (2024)
- [52] Ding, J., Xue, N., Long, Y., Xia, G.-S., Lu, Q.: Learning RoI transformer for oriented object detection in aerial images. In: CVPR (2019)
- [53] Han, J., Ding, J., Li, J., Xia, G.-S.: Align deep features for oriented object detection. TGRS (2020)

- [54] Pan, X., Ren, Y., Sheng, K., Dong, W., Yuan, H., Guo, X., Ma, C., Xu, C.: Dynamic refinement network for oriented and densely packed object detection. In: CVPR (2020)
- [55] Yang, X., Yang, X., Yang, J., Ming, Q., Wang, W., Tian, Q., Yan, J.: Learning highprecision bounding box for rotated object detection via Kullback-Leibler divergence. In: NeurIPS (2021)
- [56] Zheng, Z., Ye, R., Hou, Q., Ren, D., Wang, P., Zuo, W., Cheng, M.-M.: Localization distillation for object detection. TPAMI (2023)
- [57] Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., Li, M., Smola, A.: ResNeSt: Split-attention networks. In: CVPRW (2022)
- [58] Liu, J.-J., Hou, Q., Cheng, M.-M., Wang, C., Feng, J.: Improving convolutional networks with self-calibrated convolutions. In: CVPR (2020)
- [59] Li, X., Wang, W., Hu, X., Yang, J.: Selective kernel networks. In: CVPR (2019)
- [60] Wang, L., Li, R., Wang, D., Duan, C., Wang, T., Meng, X.: Transformer meets convolution: A bilateral awareness network for semantic segmentation of very fine resolution urban scene images. Remote Sensing (2021)
- [61] Li, R., Zheng, S., Zhang, C., Duan, C., Su, J., Wang, L., Atkinson, P.M.: Multiattention network for semantic segmentation of fine-resolution remote sensing images.

TGRS (2021)

- [62] Zhang, D., Zhang, H., Tang, J., Hua, X.-S., Sun, Q.: Causal intervention for weaklysupervised semantic segmentation. NeurIPS (2020)
- [63] Daudt, R.C., Le Saux, B., Boulch, A.: Fully convolutional siamese networks for change detection. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 4063–4067 (2018). IEEE
- [64] Fang, S., Li, K., Shao, J., Li, Z.: Snunetcd: A densely connected siamese network for change detection of vhr images. IEEE Geoscience and Remote Sensing Letters (2021)
- [65] Bandara, W.G.C., Patel, V.M.: A transformer-based siamese network for change detection. In: IEEE International Geoscience and Remote Sensing Symposium (2022)
- [66] Codegoni, A., Lombardi, G., Ferrari, A.: Tinycd: A (not so) deep learning model for change detection. Neural Computing and Applications (2023)
- [67] Zhang, C., Yue, P., Tapete, D., Jiang, L., Shangguan, B., Huang, L., Liu, G.: A deeply supervised image fusion network for change detection in high resolution bitemporal remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing (2020)
- [68] Fang, S., Li, K., Li, Z.: Changer: Feature interaction is what you need for change detection. TGRS (2023)
- [69] Zhao, S., Zhang, X., Xiao, P., He, G.:

Exchanging dual-encoder–decoder: A new strategy for change detection with semantic guidance and spatial localization. TGRS (2023)

- [70] Chen, H., Qi, Z., Shi, Z.: Remote sensing image change detection with transformers. TGRS (2021)
- [71] Lin, H., Hang, R., Wang, S., Liu, Q.: Diformer: A difference transformer network for remote sensing change detection. IEEE Geoscience and Remote Sensing Letters (2024)
- [72] Wang, D., Zhang, J., Xu, M., Liu, L., Wang, D., Gao, E., Han, C., Guo, H., Du, B., Tao, D., et al.: Mtp: Advancing remote sensing foundation model via multi-task pretraining. arXiv (2024)
- [73] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need. NeurIPS (2017)
- [74] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer using shifted windows. In: ICCV (2021)
- [75] Zhang, C., Wang, L., Cheng, S., Li, Y.: SwinSUNet: Pure transformer network for remote sensing image change detection. TGRS (2022)
- [76] Panboonyuen, T., Jitkajornwanich, K., Lawawirojwong, S., Srestasathiern, P., Vateekul, P.: Transformer-based decoder designs for semantic segmentation on remotely sensed images. Remote Sensing

(2021)

- [77] Wang, X., Chen, G., Qian, G., Gao, P., Wei, X.-Y., Wang, Y., Tian, Y., Gao, W.: Largescale multi-modal pre-trained models: A comprehensive survey. Machine Intelligence Research (2023)
- [78] Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.: Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In: ICCV (2021)
- [79] Wu, Y.-H., Liu, Y., Zhan, X., Cheng, M.-M.: P2T: Pyramid pooling transformer for scene understanding. TPAMI (2022)
- [80] Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV (2021)
- [81] Yan, H., Li, Z., Li, W., Wang, C., Wu, M., Zhang, C.: ConTNet: Why not use convolution and transformer at the same time? CoRR (2021)
- [82] Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., Torr, P.H.S., Zhang, L.: Rethinking semantic segmentation from a sequence-tosequence perspective with transformers. In: CVPR (2021)
- [83] Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: NeurIPS (2016)
- [84] Fan, D.-P., Ji, G.-P., Xu, P., Cheng, M.-M., Sakaridis, C., Gool, L.V.: Advances in deep concealed scene understanding. Visual

Intelligence (2023)

- [85] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR (2022)
- [86] Ding, X., Zhang, X., Han, J., Ding, G.: Scaling up your kernels to 31x31: Revisiting large kernel design in CNNs. In: CVPR (2022)
- [87] Liu, S., Chen, T., Chen, X., Chen, X., Xiao, Q., Wu, B., Pechenizkiy, M., Mocanu, D., Wang, Z.: More convnets in the 2020s: Scaling up kernels beyond 51x51 using sparsity. ArXiv (2022)
- [88] Gao, S., Li, Z.-Y., Han, Q., Cheng, M.-M., Wang, L.: RF-Next: Efficient receptive field search for convolutional neural networks. TPAMI (2023)
- [89] Guo, M.-H., Lu, C., Liu, Z.-N., Cheng, M.-M., Hu, S.: Visual attention network. Computational Visual Media (2022)
- [90] Guo, M.-H., Lu, C.-Z., Hou, Q., Liu, Z.-N., Cheng, M.-M., Hu, S.-M.: SegNeXt: Rethinking convolutional attention design for semantic segmentation. In: NeurIPS (2022)
- [91] Hou, Q., Lu, C.-Z., Cheng, M.-M., Feng, J.: Conv2Former: A simple transformerstyle ConvNet for visual recognition. ArXiv (2022)
- [92] Guo, M.-H., Xu, T., Liu, J.-J., Liu, Z.-N., Jiang, P.-T., Mu, T.-J., Zhang, S.-H., Martin, R., Cheng, M.-M., Hu, S.-M.: Attention mechanisms in computer vision: A survey. Computational Visual Media (2021)

- [93] Hu, J., Shen, L., Sun, G.: Squeeze-andexcitation networks. In: CVPR (2018)
- [94] Hu, J., Shen, L., Albanie, S., Sun, G., Vedaldi, A.: Gather-Excite: Exploiting feature context in convolutional neural networks. In: NeurPIS (2018)
- [95] Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H.: GCNet: Non-local networks meet squeeze-excitation networks and beyond. In: ICCVW (2019)
- [96] Li, Z., Sun, Y., Zhang, L., Tang, J.: Ctnet: Context-based tandem network for semantic segmentation. TPAMI (2022)
- [97] Li, Y., Li, X., Yang, J.: Spatial groupwise enhance: Enhancing semantic feature learning in cnn. In: ACCV (2022)
- [98] Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: Convolutional block attention module. In: ECCV (2018)
- [99] Park, J., Woo, S., Lee, J.-Y., Kweon, I.-S.: BAM: Bottleneck attention module. In: British Machine Vision Conference (2018)
- [100] Srivastava, S., Sharma, G.: Omnivec: Learning robust representations with cross modal sharing. In: Winter Conference on Applications of Computer Vision (2024)
- [101] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: ECCV (2020)
- [102] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision transformer

using shifted windows. In: CVPR (2021)

- [103] Wang, W., Xie, E., Li, X., Fan, D.-P., Song,
 K., Liang, D., Lu, T., Luo, P., Shao, L.:
 PVT v2: Improved baselines with pyramid vision transformer. Computational Visual Media (2022)
- [104] Zhang, X., Tian, Y., Xie, L., Huang, W., Dai, Q., Ye, Q., Tian, Q.: Hivit: A simpler and more efficient design of hierarchical vision transformer. In: ICLR (2022)
- [105] Xu, Y., Zhang, Q., Zhang, J., Tao, D.: Vitae: Vision transformer advanced by exploring intrinsic inductive bias. NeurIPS (2021)
- [106] Yu, H., Tian, Y., Ye, Q., Liu, Y.: Spatial transform decoupling for oriented object detection. In: AAAI (2024)
- [107] Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: Conditionally parameterized convolutions for efficient inference. NeurIPS (2019)
- [108] Chen, Y., Dai, X., Liu, M., Chen, D., Yuan,L., Liu, Z.: Dynamic convolution: Attention over convolution kernels. In: CVPR (2020)
- [109] Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. In: CVPR (2019)
- [110] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: ICCV (2017)
- [111] Liu, Z., Mao, H., Wu, C.-Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: CVPR (2022)
- [112] Yu, W., Luo, M., Zhou, P., Si, C., Zhou, Y.,

Wang, X., Feng, J., Yan, S.: MetaFormer is actually what you need for vision. In: CVPR (2022)

- [113] Hendrycks, D., Gimpel, K.: Bridging nonlinearities and stochastic regularizers with gaussian error linear units. CoRR (2016)
- [114] Zhang, G., Xu, W., Zhao, W., Huang, C., Yk, E.N., Chen, Y., Su, J.: A multiscale attention network for remote sensing scene images classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2021)
- [115] He, N., Fang, L., Li, S., Plaza, J., Plaza, A.: Skip-connected covariance network for remote sensing scene classification. IEEE Transactions on Neural Networks and Learning Systems (2020)
- [116] Liu, C., Dai, H., Wang, S., Chen, J.: Remote sensing image scene classification based on multidimensional attention and feature enhancement. IAENG International Journal of Computer Science (2023)
- [117] Wang, S., Guan, Y., Shao, L.: Multigranularity canonical appearance pooling for remote sensing scene classification. TIP (2020)
- [118] Bi, Q., Qin, K., Zhang, H., Xia, G.-S.: Local semantic enhanced convnet for aerial scene recognition. TIP (2021)
- [119] Wang, S., Ren, Y., Parr, G.P., Guan, Y., Shao, L.: Invariant deep compressible covariance pooling for aerial scene categorization. TGRS (2020)
- [120] Zhang, X., An, W., Sun, J., Wu, H., Zhang,

W., Du, Y.: Best representation branch model for remote sensing image scene classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2021)

- [121] Zhao, Z., Li, J., Luo, Z., Li, J., Chen, C.: Remote sensing image scene classification based on an enhanced attention module. TGRS Letters (2020)
- [122] Li, B., Guo, Y., Yang, J., Wang, L., Wang, Y., An, W.: Gated recurrent multiattention network for VHR remote sensing image classification. TGRS (2021)
- [123] Wang, W., Sun, Y., Li, J., Wang, X.: Frequency and spatial based multi-layer context network (fscnet) for remote sensing scene classification. International Journal of Applied Earth Observation and Geoinformation (2024)
- [124] Dong, Z., Gu, Y., Liu, T.: Upetu: A unified parameter-efficient fine-tuning framework for remote sensing foundation model. TGRS (2024)
- [125] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: A large-scale hierarchical image database. In: CVPR (2009)
- [126] Lyu, C., Zhang, W., Huang, H., Zhou, Y., Wang, Y., Liu, Y., Zhang, S., Chen, K.: RTMDet: An empirical study of designing real-time object detectors. CoRR (2022)
- [127] Guo, Z., Liu, C., Zhang, X., Jiao, J., Ji, X., Ye, Q.: Beyond bounding-box: Convex-hull feature adaptation for oriented and densely packed object detection. In: CVPR (2021)

- [128] Lang, S., Ventola, F., Kersting, K.: DAFNe: A one-stage anchor-free deep model for oriented object detection. CoRR (2021)
- [129] Hou, L., Lu, K., Xue, J., Li, Y.: Shapeadaptive selection and measurement for oriented object detection. In: AAAI (2022)
- [130] Dai, L., Liu, H., Tang, H., Wu, Z., Song, P.: AO2-DETR: Arbitrary-oriented object detection transformer. IEEE Transactions on Circuits and Systems for Video Technology (2022)
- [131] Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z., Sun, X., Fu, K.: SCRDet: Towards more robust detection for small, cluttered and rotated objects. In: ICCV (2019)
- [132] Li, Y., Mao, H., Girshick, R., He, K.: Exploring plain vision transformer backbones for object detection. In: ECCV (2022)
- [133] Wang, J., Yang, W., Li, H.-C., Zhang, H., Xia, G.-S.: Learning center probability map for detecting objects in aerial images. TGRS (2021)
- [134] Yang, X., Yan, J.: Arbitrary-oriented object detection with circular smooth label. In: ECCV (2020)
- [135] Cheng, G., Yao, Y., Li, S., Li, K., Xie, X., Wang, J., Yao, X., Han, J.: Dual-aligned oriented detector. TGRS (2022)
- [136] Cheng, G., Wang, J., Li, K., Xie, X., Lang, C., Yao, Y., Han, J.: Anchor-free oriented proposal generator for object detection. TGRS (2022)

- [137] Yang, X., Zhou, Y., Zhang, G., Yang, J., Wang, W., Yan, J., Zhang, X., Tian, Q.: The KFIoU loss for rotated object detection. In: ICLR (2022)
- [138] Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)
- [139] Cai, Z., Vasconcelos, N.: Cascade R-CNN: Delving into high quality object detection. In: CVPR (2018)
- [140] Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NeurIPS (2015)
- [141] Ming, Q., Zhou, Z., Miao, L., Zhang, H., Li,
 L.: Dynamic anchor learning for arbitraryoriented object detection. CoRR (2020)
- [142] Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PAS-CAL Visual Object Classes Challenge 2007 (VOC2007) Results
- [143] Everingham, M., Van Gool, L., Williams, C.K.I., Winn, Zisserman, A.: The PAS-CAL Visual Object Classes Challenge 2012 (VOC2012) Results
- [144] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
- [145] Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang,
 X.-Y., Yang, M.-H., Torr, P.: Res2Net:
 A new multi-scale backbone architecture.
 TPAMI (2021)
- [146] Woo, S., Debnath, S., Hu, R., Chen, X., Liu,

Z., Kweon, I.-S., Xie, S.: ConvNeXt V2: Codesigning and scaling convnets with masked autoencoders. Arxiv (2023)

- [147] Cai, Z., Vasconcelos, N.: Cascade R-CNN: High quality object detection and instance segmentation. TPAMI (2019)
- [148] Li, R., Duan, C., Zheng, S., Zhang, C., Atkinson, P.M.: Macu-net for semantic segmentation of fine-resolution remotely sensed images. IEEE Geoscience and Remote Sensing Letters 19 (2022)
- [149] Romera, E., Alvarez, J.M., Bergasa, L.M., Arroyo, R.: ERFNet: Efficient residual factorized convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems (2017)
- [150] Li, G., Yun, I., Kim, J., Kim, J.: DAB-Net: Depth-wise Asymmetric Bottleneck for Real-time Semantic Segmentation (2019)
- [151] Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: Bilateral segmentation network for real-time semantic segmentation. In: ECCV (2018)
- [152] Oršić, M., Šegvić, S.: Efficient semantic segmentation with pyramidal fusion. Pattern Recognition (2021)
- [153] Zhuang, J., Yang, J., Gu, L., Dvornek, N.: ShelfNet for fast semantic segmentation. In: ICCVW (2019)
- [154] Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: Transformer for semantic segmentation. In: ICCV (2021)
- [155] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.:

Pyramid scene parsing network. In: CVPR (2017)

- [156] Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: CVPR (2021)
- [157] Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: ECCV (2018)
- [158] Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: Simple and efficient design for semantic segmentation with transformers. In: NeurIPS (2021)
- [159] Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: ECCV (2018)
- [160] Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: A nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (2018)
- [161] Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR (2019)
- [162] Zheng, Z., Zhong, Y., Wang, J., Ma, A.: Foreground-aware relation network for geospatial object segmentation in high spatial resolution remote sensing imagery. In: CVPR (2020)
- [163] Ma, A., Wang, J., Zhong, Y., Zheng, Z.: FactSeg: Foreground activation-driven small

object semantic segmentation in large-scale remote sensing imagery. TGRS (2021)

- [164] Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., Zhou, Y.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv (2021)
- [165] Wang, J., Sun, K., Cheng, T., Jiang, B., Deng, C., Zhao, Y., Liu, D., Mu, Y., Tan, M., Wang, X., Liu, W., Xiao, B.: Deep highresolution representation learning for visual recognition. TPAMI (2019)
- [166] Wang, L.-L., Lui, S.S., Chan, R.C.: The past and future of mapping the biomarkers of psychosis. Current Opinion in Behavioral Sciences (2022)
- [167] Sun, L., Zou, H., Wei, J., Cao, X., He, S., Li, M., Liu, S.: Semantic segmentation of highresolution remote sensing images based on sparse self-attention and feature alignment. Remote Sensing (2023)
- [168] Yang, M.Y., Kumaar, S., Lyu, Y., Nex, F.: Real-time semantic segmentation with context aggregation network. ISPRS Journal of Photogrammetry and Remote Sensing (2021)
- [169] Xu, W., Xu, Y., Chang, T., Tu, Z.: Coscale conv-attentional image transformers. In: ICCV (2021)
- [170] Liu, Y., Pang, C., Zhan, Z., Zhang, X., Yang, X.: Building change detection for remote sensing images using a dual-task constrained deep siamese convolutional network model. IEEE Geoscience and Remote

Sensing Letters (2020)

- [171] Han, C., Wu, C., Guo, H., Hu, M., Chen, H.: Hanet: A hierarchical attention network for change detection with bi-temporal very-high-resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2023)
- [172] Chen, H., Li, W., Shi, Z.: Adversarial instance augmentation for building change detection in remote sensing images. TGRS (2021)
- [173] Zhang, C.-j., Liu, J.-w.: Change detection with incorporating multi-constraints and loss weights. Engineering Applications of Artificial Intelligence (2024)
- [174] Han, C., Wu, C., Du, B.: Hcgmnet: A hierarchical change guiding map network for change detection. In: IEEE International Geoscience and Remote Sensing Symposium (2023)
- [175] Han, C., Wu, C., Hu, M., Li, J., Chen, H.: C2f-semicd: A coarse-to-fine semisupervised change detection method based on consistency regularization in highresolution remote-sensing images. TGRS (2024)
- [176] Han, C., Wu, C., Guo, H., Hu, M., Li, J., Chen, H.: Change guiding network: Incorporating change prior to guide change detection in remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2023)
- [177] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G.,

Hu, H., Wei, Y.: Deformable convolutional networks. In: ICCV (2017)

[178] Muhammad, M.B., Yeasin, M.: Eigen-CAM: Class activation map using principal components. CoRR (2020)