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Conv2Former: A Simple Transformer-Style
ConvNet for Visual Recognition

Qibin Hou, Member, IEEE , Cheng-Ze Lu, Ming-Ming Cheng, Senior Member, IEEE , and Jiashi Feng

Abstract—Vision Transformers have been the most popular network architecture in visual recognition recently due to the strong ability
of encode global information. However, its high computational cost when processing high-resolution images limits the applications
in downstream tasks. In this paper, we take a deep look at the internal structure of self-attention and present a simple Transformer
style convolutional neural network (ConvNet) for visual recognition. By comparing the design principles of the recent ConvNets and
Vision Transformers, we propose to simplify the self-attention by leveraging a convolutional modulation operation. We show that such a
simple approach can better take advantage of the large kernels (≥ 7 × 7) nested in convolutional layers and we observe a consistent
performance improvement when gradually increasing the kernel size from 5 × 5 to 21 × 21. We build a family of hierarchical ConvNets
using the proposed convolutional modulation, termed Conv2Former. Our network is simple and easy to follow. Experiments show that
our Conv2Former outperforms existent popular ConvNets and vision Transformers, like Swin Transformer and ConvNeXt in all ImageNet
classification, COCO object detection and ADE20k semantic segmentation. Our code is available at https://github.com/HVision-NKU/
Conv2Former.

Index Terms—Convolutional neural networks, vision transformer, convolutional modulation, large-kernel convolution

✦

1 INTRODUCTION

THE prodigious progress in visual recognition in the
2010s was mostly dedicated to convolutional neural

networks (ConvNets), typified by VGGNet [1], Inception
series [2], [3], [4], and ResNet series [5], [6], [7], [8], etc.
These recognition models mostly aggregate responses with
large receptive fields by stacking multiple building blocks
and adopting the pyramid network architecture but neglect
the importance of explicitly modeling the global contextual
information. SENet series [9], [10], [11] break through the
traditional design of CNNs and introduce attention-based
mechanisms into CNNs to capture long-range dependen-
cies, attaining surprisingly good performance.

Since 2020, Vision Transformers (ViTs) [12], [13], [14],
[15], [16] further promoted the development of visual recog-
nition models and show better results on the ImageNet
classification and downstream tasks than the state-of-the-
art ConvNets [17], [18]. This is because compared to con-
volutions that provide local connectivity, the self-attention
mechanism in Transformers is able to model global pairwise
dependencies, providing a more efficient way to encode
spatial information as demonstrated in [19]. Nevertheless,
the computational cost caused by the self-attention when
processing high-resolution images is considerable.

Recently, an interesting work, named ConvNeXt [20], re-
veals that by simply modernizing the standard ResNet and
using the similar design and training recipe as Transform-
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Fig. 1. Comparison between the self-attention mechanism and the pro-
posed convolutional modulation operation. As can be seen, instead of
generating attention matrices via a matrix multiplication between the
query and key, we directly produce weights using a k×k depthwise con-
volution to reweigh the value via the Hadamard product (⊙: Hadamard
product; ⊗: matrix multiplication).

ers, ConvNets can behave even better than some popular
ViTs [14], [15]. RepLKNet [21] also shows the potential of
leveraging large-kernel convolutions for visual recognition.
These explorations encourage many researchers to rethink
the design of ConvNets by leveraging either large-kernel
convolutions [22], [23], or high-order spatial interactions
[24], or sparse convolutional kernels [25], etc. Till now,
how to more efficiently take advantage of convolutions
to construct powerful ConvNet architectures is still a hot
research topic in computer vision.

In this paper, we are also interested in investigating new
ways to make better use of spatial convolutions. Different
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from the ConvNeXt work [20] that aims to adjust the train-
ing recipe or the position of spatial convolutions in building
blocks, we compare the different ways ViTs and ConvNets
use to encode spatial information. As shown in the left part
of Fig. 1, self-attention computes the output of each pixel by
a weighted summation of all other positions. This process
can also be mimicked by computing the Hadamard product
between the output of a large-kernel convolution and the
value representations, which we call convolutional modula-
tion as depicted in the right part of Fig. 1. The difference is
that the convolutional kernels are static while the attention
matrix generated by self-attention can adapt to the input
content. Our experiments show that using convolutions to
generate weight matrix yields great results as well.

Simply replacing the self-attention in ViTs with the
proposed convolutional modulation operation yields the
proposed network, termed Conv2Former. The meaning be-
hind it is that we aim to use convolutions to construct
a Transformer-style ConvNet, in which the convolutional
features are used as weights to modulate the value represen-
tations. In contrast to the classic ViTs with self-attention, our
method, like many classic ConvNets, is fully convolutional
and hence its computations increase linearly rather than
quadratically as in Transformers with the image resolution
being higher. This makes our method more friendly to
downstream tasks, like object detection and high resolution
semantic segmentation.

Another main contribution of this paper is that we show
Conv2Former can benefit more from convolutions with
larger kernels, like 11×11 and 21×21. This is different from
the conclusions made in previous ConvNets [20], [26], which
demonstrate using standard depthwise convolutions with
kernel sizes larger than 9× 9 brings nearly no performance
gain but computational burden. Our experiments show that
a consistent performance improvement can be obtained
when gradually increasing the convolutional kernel size
from 5× 5 to 21× 21. We also show that our method using
11 × 11 depthwise convolutions performs even better than
the recent works using super large kernel convolutions [21],
[25] (e.g., 31 × 31), reflecting the effectiveness of our pro-
posed spatial encoding method.

We evaluate Conv2Former on popular vision tasks,
including ImageNet classification [27], COCO object de-
tection/instance segmentation [28], and ADE20k seman-
tic segmentation [29]. To validate the capability of
Conv2Former on larger datasets, we also pretrain our
model on the ImageNet-22k dataset and evaluate the per-
formance on downstream tasks. Experiments show that
Conv2Former performs better than popular ConvNets, like
ConvNeXt [20] and EfficientNetV2 [18]. We hope our work
could provide informative design choices for future visual
recognition models.

2 RELATED WORK

2.1 Convolutional Neural Networks
The success of early visual recognition models is mostly
dedicated to the development of ConvNets, typified by
VGGNet [1] and GoogLeNet [2]. These models, suffer-
ing from the gradient vanishing problem, mostly contain
less than 20-layer convolutions. Later, the emerging of

ResNets [5] advances the conventional ConvNets by in-
troducing shortcut connections, which make training very
deep models possible. Inceptions [3], [4] and ResNeXt [6]
further enrich the design principles of ConvNets and pro-
pose to use building blocks with multiple parallel paths of
specialized-filter convolutions. Instead of tuning network
architectures, SENet [9] and its follow-ups [10], [11] aim
to improve ConvNets with lightweight attention modules
that can explicitly model the inter-dependencies among
channels. EfficientNets [17], [18] and MobileNetV3 [30] take
advantage of neural architecture search [31] to search for
efficient network architectures. Very recently, some works
aim to show the advantages of introducing large-kernel
convolutions [20], [21], [22], [24], [25]. A typical example
should be VAN [22] that utilizes a standard depthwise
convolution and a dilated one to decompose large-kernel
convolutions. HorNet [24] further advances VAN by ex-
plicitly building high-order spatial interactions based on
recursive gated convolutions. Our Conv2Former is different
from VAN and HorNet in that we do not aim to decompose
large-kernel convolutions but show self-attention can be
reduced to the convolutional modulation operation, which
results in good recognition performance as well. Our work
is also related to DWNet [32] that also attempts to connect
local self-attention and depth-wise convolutions. Different
from DWNet, our Conv2Former aims to produce attention
weights with depthwise convolution to reweigh the value
via the Hadamard product but DWNet replaces the whole
local self-attention with depthwise convolution. In addition,
there are also some works leveraging different training or
optimization methods or finetuning techniques [33], [34],
[35] to advance EfficientNet.

2.2 Vision Transformers

Transformers, originally designed for natural language pro-
cessing tasks [36], have been widely used in visual recogni-
tion. The most typical work should be Vision Transformer
(ViT) [12] which shows the great potential of Transform-
ers for processing large-scale data in image classification.
DeiT [13] improves the original ViT by using strong data
augmentation methods and knowledge distillation and gets
rid of the dependence of ViTs on large-scale data. Moti-
vated by the success of pyramid architecture in ConvNets,
some works [14], [15], [37], [38] design pyramid structures
using Transformers to take advantage of multi-scale fea-
tures. Some works [39], [40], [41], [42], [43], [44] propose
to introduce local dependencies into ViTs, showing great
performance in visual recognition. Besides, there are also
some works [16], [45], [46], [47], [48] exploring the scaling
capability of ViTs in visual recognition. Specially, Yuan et
al. [16] show that a two-stage ViT outperforms the state-of-
the-art CNNs on ImageNet for the first time.

2.3 Other Models

Some recent works show that mixing both Transformers and
convolutions [19], [43], [49] is a promising way to develop
stronger visual recognition models especially for those aim-
ing at efficient network design. A typical example should
be MobileViT [50], which provides an efficient way to fuse
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Fig. 2. Overall architecture of Conv2Former. Like most previous ConvNets and Swin Transformer, we adopt a pyramid structure with four
stages. In each stage, different numbers of convolutional blocks are used. This figure shows the setting of the proposed Conv2Former-T, where
{L1, L2, L3, L4} = {3, 3, 12, 3}.

both convolutions and Transformers. EfficientViT [51], Ed-
geNeXt [52], and MobileFormer [53] bring back convolu-
tions to Transformers and show great performance in both
image classification and downstream tasks. Moreover, there
are also hybrid networks that introduce different attention
mechanisms into ConvNet for global context encoding [54],
[55], [56], [57], [58]. In addition, designing MLP-like archi-
tectures is also a popular research topic for visual recogni-
tion [59], [60], [61].

Our method is also related some recent works [62], [63],
[64], [65] that aim to improve the spatial encoding ability
or efficiency of CNNs or ViTs. RIFormer [62] introduces
the re-parameterizing idea to reduce the token mixing op-
erations in ViTs to improve inference efficiency. LITv2 [64]
encodes part of the spatial information with self-attention at
a lower resolution to increase running speed. Hu et al. [63]
experimentally studied some typical spatial token mixers
and analyzed their performance on multiple vision tasks.
SMT [65] is a concurrent work to our method that demon-
strates mixing convolutions with different kernel sizes helps
visual recognition.

3 MODEL DESIGN

In this section, we describe the architecture of our pro-
posed Conv2Former and provide some useful suggestions
in model design and layer adjustment.

3.1 Architecture

Overall architecture. The overall architecture has been
shown in Fig. 2. Similarly to the ConvNeXt [20] and Swin
Transformer network [14], our Conv2Former also adopts a
pyramid architecture. There are four stages in total, each
of which has a different feature map resolution. Between
two consecutive stages, a patch embedding block is used to
reduce the resolution, which is often a 2 × 2 convolution
with stride 2. Different stages have different numbers of
convolutional blocks. We build five Conv2Former variants,
namely Conv2Former-N, Conv2Former-T, Conv2Former-S,
Conv2Former-B, Conv2Former-L. Details are summarized
in Tab. 1.

Stage configuration. When the number of learnable param-
eters is fixed, how to arrange the width and depth of the
network has an impact on the model performance [17], [35].
The original ResNet-50 sets the number of blocks in each
stage to (3, 4, 6, 3). ConvNeXt-T changes the block numbers

TABLE 1
Brief configurations of the proposed Conv2Former. We implement 5

variants with numbers of parameters 15M, 27M, 50M, 90M, and 199M,
respectively.

Model {C1, C2, C3, C4} {L1, L2, L3, L4}

⋆ Conv2Former-N {64, 128, 256, 512} {2, 2, 8, 2}
⋆ Conv2Former-T {72, 144, 288, 576} {3, 3, 12, 3}
⋆ Conv2Former-S {72, 144, 288, 576} {4, 4, 32, 4}
⋆ Conv2Former-B {96, 192, 384, 768} {4, 4, 34, 4}
⋆ Conv2Former-L {128, 256, 512, 1024} {4, 4, 48, 4}

TABLE 2
Stage comparison with three popular models. Slightly adjusting the

number of convolutional blocks as shown in the last row improves the
performance.

Model Params. FLOPs Stage Conf. Top-1 Acc.

ResNet-50 [5] 26M 4.0G 3-4-6-3 78.5%
Swin-T [14] 28M 4.5G 2-2-6-2 81.5%
ConvNeXt-T [20] 29M 4.5G 3-3-9-3 82.1%
⋆ Conv2Former-N 15M 2.2G 2-2-8-2 81.5%
⋆ Conv2Former-T 28M 4.4G 3-3-8-3 82.8%
⋆ Conv2Former-T 27M 4.4G 3-3-12-3 83.2%

to (3, 3, 9, 3) following the principle used in Swin-T and
uses the stage compute ratio of 1 : 1 : 9 : 1 for larger
models. Differently, we slightly adjust the ratios as shown in
Tab. 1. We observe that for a tiny-sized model (with less than
30M parameters) deeper networks perform better. A brief
comparison among four different tiny-sized models can be
found in Tab. 2.

3.2 Convolutional Modulation Block

Our convolutional block used in each stage shares a similar
structure to Transformers, which mainly contains a self-
attention layer for spatial encoding and an MLP for channel
mixing. Differently, we replace the self-attention layer with
a simple convolutional modulation layer.

Self-attention. For an input token sequence X of length N ,
self-attention first generates the key K, query Q, and value
V using linear layers, where X,K,Q,V ∈ RN×C , N =
H ×W , C is the channel number, H and W are the spatial
size of the input. The output is the weighted average of the
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value based on a similarity score A,

Attention(X) = AV, (1)

where A measures the relationships between each pair of
input tokens, which can be written as

A = Softmax(QK⊤). (2)

Note that we omit the scaling factor for simplicity. In spite
of the high efficiency in encoding spatial information, the
similarity score matrix A has a shape of RN×N , making the
computational complexity of self-attention grows quadrati-
cally as the sequence length N increases.

Convolutional modulation. In our convolutional modula-
tion layer, instead of calculating the similarity score matrix
A via Eqn. 2, we simplify self-attention by modulating
the value V with convolutional features. Specifically, given
the input tokens X ∈ RH×W×C , we use a simple depth-
wise convolution with kernel size k × k and the Hadamard
product to calculate the output Z as follows:

Z = A⊙V, (3)
A = DConvk×k(W1X), (4)
V = W2X, (5)

where ⊙ is the Hadamard product, W1 and W2 are weight
matrices of two linear layers, and DConvk×k denotes a
depthwise convolution with kernel size k × k. The above
convolutional modulation operation enables each spatial
location (h,w) to be correlated with all the pixels within
the k × k square region centered at (h,w). The information
interaction among channels can be achieved by the linear
layers. The output for each spatial location is the weighted
sum of all the pixels within the square region.

Advantages. Compared to self-attention, our method uti-
lizes convolutions to build relationships, which are more
memory-efficient than self-attention especially when pro-
cessing high-resolution images. Compared to the classic
residual blocks [5], [20], our method can also adapt to the
input content due to the modulation operation.

3.3 Micro Design

Larger kernel than 7×7. How to make use of spatial convo-
lutions is important for ConvNet design. Since VGGNet [1]
and ResNets [5], [6], 3 × 3 convolutions have been a stan-
dard choice for building ConvNets. Later, the emerging of
depthwise separable convolution [66] changes this situation.
ConvNeXt shows that enlarging the kernel size of ConvNets
from 3 to 7 can improve the classification performance.
However, further increasing the kernel size nearly brings
no performance gain but computational burden without re-
parameterization [21], [67].

We argue that the reason making ConvNeXt benefit
little from larger kernel sizes than 7 × 7 is the way to
use spatial convolutions. For Conv2Former, we observe a
consistent performance gain as the kernel size increases
from 5 × 5 to 21 × 21. This phenomenon not only hap-
pens for Conv2Former-T (82.8 → 83.4) but also holds
for Conv2Former-B with 80M+ parameters (84.1 → 84.5).
Considering the model efficiency, we set the kernel size to
11× 11 by default.

TABLE 3
Top-1 accuracy result comparison on ImageNet [27]. Compared to

previous popular Transformers and ConvNets, our
Conv2Former achieves a surprisingly good results for network variants

with different model sizes.

Model #Params FLOPs Image Size Top-1 Acc.

VAN-B1 [22] 14M 2.5G 224×224 81.1%
⋆ Conv2Former-N 15M 2.2G 224×224 81.5%
ResNet50-d [5], [68] 26M 4.3G 224×224 79.5%
SwinT-T [14] 28M 4.5G 224×224 81.5%
DWNet-T [32] 26M 4.4G 224×224 81.8%
ConvNeXt-T [20] 29M 4.5G 224×224 82.1%
VAN-B2 [22] 27M 5.0G 224×224 82.8%
⋆ Conv2Former-T 27M 4.4G 224×224 83.2%

SwinT-S [14] 50M 8.7G 224×224 83.0%
ConvNeXt-S [20] 50M 8.7G 224×224 83.1%
VAN-B3 [22] 45M 9.0G 224×224 83.9%
NFNet-F0 [35] 72M 12.4G 256×256 83.6%
⋆ Conv2Former-S 50M 8.7G 224×224 84.1%

DeiT-B [13] 86M 17.5G 224×224 81.8%
DWNet-B [32] 80M 14.3G 224×224 83.4%
RepLKNet-31B [21] 79M 15.3G 224×224 83.5%
SwinT-B [14] 88M 15.4G 224×224 83.5%
ConvNeXt-B [20] 89M 15.4G 224×224 83.8%
FocalNet-B [69] 89M 15.4G 224×224 83.9%
SLak-B [25] 95M 17.1G 224×224 84.0%
MOAT-2 [70] 73M 17.2G 224×224 84.2%
EffNet-B7 [51] 66M 37.0G 600×600 84.3%
⋆ Conv2Former-B 90M 15.9G 224×224 84.4%

Weighting strategy. As shown in Fig. 1, we consider the
outputs of depthwise convolutions as weights to modulate
the features after the linear projection. It is worth noting that
we use neither activation nor normalization layers (e.g., Sig-
moid or Lp normalization) before the Hadamard product.
This is an essential factor to attain good performance. For
example, adding a Sigmoid function as done in SENet [9]
decreases the performance by more than 0.5%.

We want to stress that FocalNet [69] adopts a similar
weighting strategy as ours but its motivation is different.
FocalNet aims to extract multi-level features via 3 × 3
depthwise convolutions and global average pooling for
hierarchical context aggregation. Differently, we attempt to
simplify the self-attention operation by leveraging simple
large kernel convolutions and investigate an efficient way
to make use of large kernel convolutions for ConvNets. Our
method is much simpler than FocalNet and experiments
demonstrate the advantages of Conv2Former over FocalNet.

Normalization and activations. For normalization layers,
we follow the original ViT and ConvNeXt and adopt the
Layer Normalization [71] instead of the widely-used batch
normalization [72]. For activation layers, we use GELU [73].
We found that the combination of Layer Normalization and
GELU brings 0.1%-0.2% performance gain.
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TABLE 4
Top-1 accuracy results on ImageNet [27] with pretraining on the
ImageNet-22k dataset. We can observe consistent improvement

compared to ConvNeXt. Our Conv2Former-L also performs better than
EfficientNetV2-XL and CoAtNet-3.

Model #Params FLOPs Image Size Top-1 Acc.

ConvNeXt-S [20] 50M 8.7G 224×224 84.6%
⋆ Conv2Former-S 50M 8.7G 224×224 84.9%

SwinT-B [14] 88M 15.4G 224×224 85.2%
ConvNeXt-B [20] 89M 15.4G 224×224 85.8%
⋆ Conv2Former-B 90M 15.9G 224×224 86.2%
SwinT-B [14] 88M 47.0G 384×384 86.4%
ConvNeXt-B [20] 89M 45.1G 384×384 86.8%
⋆ Conv2Former-B 90M 46.7G 384×384 87.0%

EffNet-V2-XL [18] 208M 94.0G 480×480 87.3%
SwinT-L [14] 197M 34.5G 224×224 86.3%
ConvNeXt-L [20] 198M 34.4G 224×224 86.6%
⋆ Conv2Former-L 199M 36.0G 224×224 87.0%
SwinT-L [14] 197M 104G 384×384 87.3%
ConvNeXt-L [20] 198M 101G 384×384 87.5%
CoAtNet-3 [43] 168M 107G 384×384 87.6%
⋆ Conv2Former-L 199M 105.9G 384×384 87.7%

4 EXPERIMENTS

4.1 Experiment Setup

Datasets. We evaluate the classification performance of the
proposed Conv2Former on the widely-used ImageNet-1k
dataset [27], which contains around 1.2M training images
and 1,000 different categories. We report the results on
the validation set that has in total 50k images. Like some
other popular models [14], [20], we also test the scaling
ability of the proposed Conv2Former using the large-scale
ImageNet-22k dataset for pretraining, which has around
14M images and 21,841 classes. After pretraining, we use
the ImageNet-1k dataset for finetuning and report results
on the ImageNet-1k validation set as well.

Training settings. We implement our model based on
PyTorch [74]. During training, we use the AdamW op-
timizer [75] with a linear learning rate scaling strategy
lr = LRbase × batch size/1024. The initial learning rate
LRbase is set to 0.001 and weight decay rate is set to 5×10−2

as suggested in previous work [20]. Throughout the ex-
periments on ImageNet, we randomly crop the image size
to 224 × 224 and adopt some common data augmentation
methods, such as MixUp [76] and CutMix [77]. Stochastic
Depth [78], Random Erasing [79], Label Smoothing [3],
RandAug [80], and Layer Scale [46] of initial value 1e-6
are used as well. We train all the models for 300 epochs.
For experiments on the ImageNet-22k, we first pretrain our
model on this dataset for 90 epochs and then finetuning on
ImageNet-1k for 30 epochs following ConvNeXt [20].

4.2 Comparison with Other Methods

We compare our Conv2Former with some popular network
architectures, including Swin Transformer [14], ResNet [5],
ConvNeXt [20], NFNet [35], DeiT [13], DWNet [32], Fo-
calNet [69], VAN [22], SLak [25], EfficientNets [17], [18],
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Fig. 3. ImageNet classification accuracy v.s. inference speed. We can
see that our proposed Conv2Former achieves the best trade-off. The
inference speed is tested on an NVIDIA V100 GPU.

CoAtNet [43], RepLKNet [21], and MOAT [70]. Note that
some of them are hybrid models of CNNs and Transformers.

ImageNet-1k. We first train our Conv2Former on the
ImageNet-1k dataset and show the results in Tab. 3. For tiny-
sized models (< 30M), our Conv2Former has 1.1% and 1.7%
performance gains compared to ConvNeXt-T and SwinT-T,
respectively. Even our Conv2Former-N with 15M parame-
ters and 2.2G FLOPs performs the same as SwinT-T with
28M parameters and 4.5G FLOPs. For the base models, the
performance gain decreases but there are still 0.6% and 0.9%
improvement over ConvNeXt-B and SwinT-B. Compared
to other popular models, our Conv2Former also perform
better than those with similar model sizes. In particular,
our Conv2Former receives better results than DWNet [32]
which also attempts to connect the local self-attention and
depthwise convolution, for both tiny- and base-sized mod-
els. Notably, our Conv2Former-B even behaves better than
EfficientNet-B7 (84.4% v.s. 84.3%), whose computations are
two times larger than ours (37G v.s. 15G).

ImageNet-22k. We pretrain our Conv2Former on the large
ImageNet-22k dataset and then finetune on the ImageNet-
1k dataset. This experiment can reflect the data scaling
capability of our Conv2Former. For all experiments, we
follow the settings used in [20] to train and finetune the
models. The results have been listed in Tab. 4. Compared to
the different variants of ConvNeXt, our Conv2Formers all
perform better when the model sizes are similar. In addition,
we can see that when finetuning on a larger resolution
384 × 384 our Conv2Former-L attains better result than
hybrid models, like CoAtNet. Our Conv2Former-L achieves
the best result 87.7%.

Timing. Here, we compare our Conv2Former with three
popular models, including ConvNeXt, Swin Transformer,
and FocalNet, in terms of inference speed. We show the
accuracy-speed curves of all four methods in Fig. 3. We
can see that our Conv2Former achieves the best trade-
off between classification accuracy and inference speed on
ImageNet.
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TABLE 5
Statistical analysis of the effective receptive fields for four CNN-based

methods. ‘Mean’ indicates the average results under different
thresholds from 0.5 to 0.9 with step 0.05. For both ‘Side Length’ and

‘Area Ratio,’ our Conv2Former achieves the best results.

Model Side Length Area Ratio (%)
0.5 0.75 Mean 0.5 0.75 Mean

ConvNeXt-T 70.0 102.5 96.6 14.8 30.4 27.9
VAN-B1 62.0 115.5 104.8 10.9 31.5 28.5
FocalNet-T 59.0 100.0 94.2 10.0 27.0 25.2
Conv2Former-T 75.0 113.5 106.7 15.4 33.4 30.5

Effective receptive field analysis. To demonstrate why
the proposed Conv2Former works better than recent state-
of-the-art CNN-based methods, we analyze the effective
receptive fields (ERFs) produced by different method as
shown in Tab. 5. We use two thresholds 0.5 and 0.75 to
compute the side length and area ratio, respectively. In
addition, we also calculate the mean results under different
thresholds from 0.5 to 0.9 with a step of 0.05. We can see
that our Conv2Former performs better than FocalNet, VAN,
and ConvNeXt in terms of side length. For area ratio, our
Conv2Former yields the best results.

As shown in Fig. 4, we also attempt to visualize the ERFs
of different stages for four models. It can be clearly seen that
for Stages 2 and 3, our Conv2Former can also have larger
ERFs than other three methods. We argue that this is mainly
because the proposed convolutional modulation block can
encode the spatial information in a more appropriate way.
It enables even the middle layers of our Conv2Former to
be able to capture large ERFs. Therefore, our Conv2Former
with a simple network architecture can produce state-of-the-
art results.

Advantages over other large-kernel methods. Employing
large-kernel convolutions is a straightforward way to assist

TABLE 6
Comparison with the recent state-of-the-art ConvNets with different

kernel sizes. We can see that without any other training techniques, like
re-parameterization or using sparse weights, our Conv2Former with

kernel size 11× 11 achieves the best result. These experiments
indicate that our convolutional modulation operation can more

efficiently encode the spatial information.

Model Kernel size #Params FLOPs Acc.

RepLKNet-31B [21] 31× 31 79M 15.3G 83.5%
ConvNeXt-B [20] 7× 7 89M 15.4G 83.8%
SLaK-B [25] 51× 51 95M 17.1G 84.0%
⋆ Conv2Former-B 7× 7 89M 15.6G 84.2%
⋆ Conv2Former-B 11× 11 90M 15.9G 84.4%

TABLE 7
Performance comparison when different fusion strategies are used in

our convolutional modulation block. All results are based on
Conv2Former-T. We can see that using the simple Hadamard product

yields the best result.

Weighting Strategy Top-1 Acc.

Element-wise sum 82.7%
Adding a Sigmoid function after A 82.3%
Adding an L1 normalization after A 82.8%
Linearly normalizing the values of A to (0, 1] 82.2%
⋆ Hadamard product 83.2%

CNNs in building long-range relationships. However, di-
rectly using large-kernel convolutions (> 7 × 7) in existing
CNN-based architectures makes the recognition models dif-
ficult to optimize [20], [26]. Recently, there are a few works
aiming to develop new techniques to evoke the utilization
of large-kernel convolutions in CNNs. In Tab. 6, we show
the results by the recent state-of-the-art ConvNets with
different kernel sizes. We can see that without any other
training techniques, like re-parameterization or using sparse
weights, our Conv2Former with kernel size 7 × 7 already
performs better than other methods under the base model
setting. Using a larger kernel size 11 × 11 yields a better
performance gain. These results reflect the advantage of our
convolutional modulation block.

4.3 Method Analysis

In this subsection, we provide a series of method analysis
on the proposed convolution modulation operation.

Kernel size. The ConvNeXt work [20] shows that there is
no performance gain when the kernel size of depthwise
convolutions is more than 7 × 7. Here, we investigate how
would the model performance change when larger kernel
sizes are used. We select 6 different kernels for the depth-
wise convolutions, i.e., {5 × 5, 7 × 7, 9 × 9, 11 × 11, 15 ×
15, 21 × 21} and show the results based on two model
variants, Conv2Former-T and Conv2Former-B. The results
can be found in Fig. 5(a). The performance gain seems
to saturates until the kernel size is increased to 21 × 21.
This result is quite different from that made by ConvNeXt
who concludes that using larger than 7 × 7 kernels brings
no clear performance gain. This indicates that using the
convolutional features as weights as formulated in Eqn. 3
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Fig. 5. Ablative experiments. For both Conv2Former-T and Conv2Former-B, we can observe a consistent performance improvement when
increasing the kernel size from 5×5 to 21×21. When replacing the Hadamard product with the element-wise summation operation, the performance
drops for all four variants of our Conv2Former.

can more efficiently take advantage of large kernels than
traditional ways [5], [20].

Hadamard product is better than summation. As shown
in Fig. 1, we use the convolutional features extracted by the
depthwise convolutions to modulate the weights of the right
linear branch via the Hadamard product operation. In our
experiments, we have also attempt to leverage the element-
wise summation to fuse the two branches. Fig. 5(b) shows
the comparison results on our Conv2Former at different
model sizes. The Hadamard product performs better than
element-wise summation, indicating convolutional modula-
tion is more efficient than summation in encoding spatial
information. We can also observe that small models benefit
more from Hadamard product.

Weighting strategy. Other than the aforementioned two fu-
sion strategies, we also attempt to use other ways to fuse the
feature maps, including adding a Sigmoid function after A,
applying L1 normalization to A, and linearly normalizing
the values of A to (0, 1]. The results are summarized in
Tab. 7. We can see that the Hadamard product leads to
better results than all other operations. More interestingly,
when adjusting the values of A to positive values using
either the Sigmoid function or linear normalization to (0, 1],
the performance drops more. This is different from the
traditional attention mechanisms, like SE [9] and CA [11]
that leverage the Sigmoid function before reweighing. We
leave this for future research.

4.4 Visual Analysis

Feature visualizations. To further demonstrate the effec-
tiveness of the proposed method over the recent state-of-
the-art models, like FocalNet and ConvNeXt, we use Grad-
CAM [81] to visualize the feature maps produced by differ-
ent models. The visual results are shown in Fig. 6. We can
see that compared to other three models, our Conv2Former
can more accurately locate the target objects. In particular,
for objects with elongated shapes (See the top two rows), our
Conv2Former can also precisely capture them. This enables
our Conv2Former to recognize better than other models.

ConvNext-T VAN-B1 FocalNet-T Conv2Former-T

Fig. 6. Feature visualizations of four methods. We adopt the widely-used
Grad-CAM [81] as our visualization tool. We can see that our method
can more accurately locate the target objects than other three CNN-
based methods.

4.5 Results on Isotropic Models to ViTs

Different from the classic CNNs that adopt hierarchical
architectures, the vanilla ViT [12], [13] due to the heavy self-
attention layer utilizes a plain architecture that contains a
patch embedding layer and a stack of Transformers with
the same sequence length. This plain architecture has been
widely used in recent works on Transformers. Here, we
follow ConvNeXt [20] and also attempt to investigate the
performance of Conv2Former under the ViT-style architec-
ture settings. Similar to ConvNeXt, we set the number of
blocks to 18 for both Conv2Former-IS and Conv2Former-IB
and adjust the channel numbers to match the model size. We
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TABLE 8
Comparisons among our isotropic Conv2Former, ConvNeXt, and ViT. ‘3

Convs’ means that we use three convolutional layers for patch
embedding at the beginning of the network as done in [43], [45], [48].

For both the small-sized and base-sized models, our
Conv2Former achieves better results with comparable parameters and

computations to other methods.

Model Patch Embed #Params FLOPs Top-1 Acc.

DeiT-S 1 Conv 22M 4.6G 79.8%
ConvNeXt-IS 1 Conv 22M 4.3G 79.7%
⋆ Conv2Former-IS 1 Conv 23M 4.3G 81.2%
⋆ Conv2Former-IS 3 Convs 23M 4.5G 82.0%

DeiT-B 1 Conv 87M 17.6G 81.8%
ConvNeXt-IB 1 Conv 87M 16.9G 82.0%
⋆ Conv2Former-IB 1 Conv 86M 16.5G 82.7%
⋆ Conv2Former-IB 3 Convs 87M 17.3G 83.0%

use two versions of the patch embedding module: a 16× 16
convolution with stride 16 and three convolutions as done
in [45].

Tab. 8 shows the results. We take the DeiT-S and DeiT-
B model as baselines. For brevity, we add a letter ‘I’ in the
model names, representing that the corresponding models
use the isotropic architecture as the original ViT. We can see
that for small-sized models with around 22M parameters,
our Conv2Former-IS performs much better than DeiT-S and
ConvNeXt-IS. The performance gain is around 1.5%. When
scaling up the model size to 80M+, our Conv2Former-IB
achieves a top-1 accuracy score of 82.7%, which is also 0.7%
better than ConvNeXt-IB and 0.9% better than DeiT-B. In
addition, using three convolutions for patch embedding can
further improve the result.

4.6 Results on Downstream Tasks
In this subsection, we evaluate our method on two down-
stream tasks, including object detection on COCO [28] and
semantic segmentation ADE20k [29].

Results on COCO. Following previous works [14], [20], we
conduct experiments using two popular object detectors,
Mask R-CNN [82] and Cascade Mask R-CNN [83] and
report both the object detection and instance segmentation
results. For training, we follow the experiment settings used
in ConvNeXt [20], including multi-scale training, AdamW
optimizer with a 3× learning schedule, GIoU loss [84], etc.
Readers can refer to [20], [85] for more detailed experimental
settings. We use the MMDetection toolbox [86] to run all the
object detection experiments.

The results can be found in Tab. 9. For tiny-sized models,
our Conv2Former-T achieves about 2% AP improvement
over SwinT-T and ConvNeXt-T when using the Mask R-
CNN framework in object detection. For instance segmenta-
tion, the performance gain is also more than 1%. When using
the Cascade Mask R-CNN framework, we can observe more
than 1% performance gain than SwinT-T and ConvNeXt-T.
When scaling up the models, the improvement is also clear.

Results on ADE20k. Following [14], [20], we train the
models using the training set and report results on the val
set. For tiny-, small-, base-sized models, we randomly crop
the image to 512 × 512, and for the large-sized model, we

TABLE 9
COCO [28] object detection and instance segmentation results using

Mask R-CNN [82] and Cascade Mask R-CNN [83]. We use
ImageNet-1k pretrained backbones.

Model FLOPs APb APb
50 APb

75 APm APm
50 APm

75

Mask R-CNN [82] 3× schedule
SwinT-T 267G 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T 262G 46.2 67.9 50.8 41.7 65.0 44.9
⋆ Conv2Former-T 255G 48.0 69.5 52.7 43.0 66.8 46.1

Cascade Mask R-CNN [83] 3× schedule
SwinT-T 743G 50.4 69.2 54.7 43.7 66.6 47.3
ConvNeXt-T 741G 50.4 69.1 54.8 43.7 66.5 47.3
SLaK-T 841G 51.3 70.0 55.7 44.3 67.2 48.1
⋆ Conv2Former-T 734G 51.4 69.8 55.9 44.5 67.4 48.3
SwinT-S 833G 51.9 70.7 56.3 45.0 68.2 48.8
ConvNeXt-S 827G 51.9 70.8 56.5 45.0 68.4 49.1
⋆ Conv2Former-S 823G 52.8 71.4 57.3 45.7 69.0 49.8
SwinT-B 975G 51.9 70.5 56.4 45.0 68.1 48.9
ConvNeXt-B 964G 52.7 71.3 57.5 45.6 69.0 49.8
⋆ Conv2Former-B 968G 52.8 71.1 57.2 45.6 68.7 49.3

TABLE 10
Comparisons with Swin-T and ConvNeXt on ADE20k [29]. We use
UperNet [87] as the decoder. At all model sizes, our Conv2Former

achieves the best results.

Model Crop Size #Params FLOPs mIoU (%)

ImageNet-1K pre-trained
SwinT-T 5122 59M 946G 45.8
ConvNeXt-T 5122 59M 940G 46.7
⋆ Conv2Former-T 5122 55M 931G 48.0

SwinT-S 5122 80M 1039G 49.5
ConvNeXt-S 5122 81M 1024G 49.6
⋆ Conv2Former-S 5122 78M 1021G 50.3

SwinT-B 5122 120M 1189G 49.7
ConvNeXt-B 5122 121M 1166G 49.9
⋆ Conv2Former-B 5122 119M 1171G 51.0

ImageNet-22K pre-trained
SwinT-L 6402 232M 2479G 53.5
ConvNeXt-L 6402 233M 2453G 53.7
⋆ Conv2Former-L 6402 230M 2483G 54.3

crop the image to 640×640. We use the UperNet [87] as our
decoder.

Results are summarized in Tab. 10. For models at differ-
ent scales, our Conv2Former can outperform both the Swin
Transformer and ConvNeXt. Notably, there is a 1.3% mIoU
improvement compared to ConvNeXt at the tiny scale and
the improvement is 1.1% at the base scale. When we further
increase the model size, our Conv2Former-L with UperNet
achieves an mIoU score of 54.3%, which is also clearly better
than Swin-L and ConvNeXt-L.

5 CONCLUSIONS AND DISCUSSIONS

This paper present Conv2Former, a new convolutional net-
work architecture for visual recognition. The core of our
Conv2Former is the convolutional modulation operation
that simplifies the self-attention mechanism by using only
convolutions and Hadamard product. We show that our
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convolutional modulation operation is a more efficient
way to take advantage of large-kernel convolutions. Our
experiments in ImageNet classification, object detection,
and semantic segmentation also show that our proposed
Conv2Former performs better than previous CNN-based
models and most of the Transformer-based models. We
believe there is still a large room to improve the perfor-
mance of ConvNets and we hope our method could provide
insights for future research on ConvNets.
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