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Abstract

Given unlabelled datasets containing both old and new cat-
egories, generalized category discovery (GCD) aims to ac-
curately discover new classes while correctly classifying old
classes. Current GCD methods only use a single visual
modality of information, resulting in a poor classification of
visually similar classes. As a different modality, text infor-
mation can provide complementary discriminative informa-
tion, which motivates us to introduce it into the GCD task.
However, the lack of class names for unlabelled data makes
it impractical to utilize text information. To tackle this
challenging problem, in this paper, we propose a Text Em-
bedding Synthesizer (TES) to generate pseudo text embed-
dings for unlabelled samples. Specifically, our TES lever-
ages the property that CLIP can generate aligned vision-
language features, converting visual embeddings into to-
kens of the CLIP's text encoder to generate pseudo text em-
beddings. Besides, we employ a dual-branch framework,
through the joint learning and instance consistency of dif-
ferent modality branches, visual and semantic information
mutually enhance each other, promoting the interaction and
fusion of visual and text knowledge. Our method unlocks the
multi-modal potentials of CLIP and outperforms the base-
line methods by a large margin on all GCD benchmarks,
achieving new state-of-the-art. Our code is available at:
https://github.com/enguangW/GET

1. Introduction

Deep neural networks trained on large amounts of la-
beled data have shown powerful visual recognition capa-
bilities [23]. Although this is heartening, the close-set as-
sumption severely hinders the deployment of the model in
practical application scenarios. Recently, novel class dis-
covery (NCD) [15] has been proposed to categorize un-
known classes of unlabelled data, leveraging knowledge
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Figure 1. The motivation of our method. (a) Current GCD meth-
ods [45] rely on single visual features, resulting in poor classifica-
tion of visually similar classes; Our approach introduces text in-
formation, improving the discriminative capabilities of the model.
(b) Our proposed method maps image embeddings to text embed-
dings while simultaneously achieving modal alignment.

learned from labeled data. As a realistic extension to NCD,
generalized category discovery (GCD) [41] assumes that
the unlabelled data come from both known and unknown
classes, rather than just unknown classes as in NCD. The
model needs to accurately discover unknown classes while
correctly classifying known classes of the unlabelled data,
breaking the close-set limitation, making GCD a challeng-
ing and meaningful task.

Previous GCD methods [35, 41, 45, 48, 51] utilize a
DINO [5] pre-trained ViT as the backbone network to ex-
pect good initial discrimination ability of the model, thereby
facilitating fine-tuning on the training data. Although
promising results have been achieved, these representations
derived from a single visual backbone often struggle with
visually similar categories, such as the classes in all fine-
grained datasets and some super-class subsets of generic
datasets. As shown in Fig. 1 (a), replacing the backbone of
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the parametric baseline [45] with the powerful CLIP [36] vi-
sual encoder still struggles to generalize certain visual con-
cepts, leading to sub-optimal results. Inspired by the idea
that the textual modality can provide complementary dis-
criminative information, we decided to introduce text in-
formation into the GCD task to compensate for the insuffi-
cient discriminative of visual concepts. However, the lack
of class names for unlabelled data in GCD makes it imprac-
tical to use the text encoder, thus locking the multi-modal
potential of CLIP for GCD.

In order to tackle this challenging problem, in this pa-
per, we propose a generative-based method to GEnerate
pseudo Text embeddings for unlabelled data, dubbed GET.
In particular, we first introduce a Text Embedding Synthe-
sizer (TES) module based on the vision-language align-
ment property of CLIP, producing reliable and modality-
aligned pseudo text features. As shown in Fig. 1 (b), TES
learns a mapping that transforms image embeddings into
text embeddings. Specifically, TES converts visual embed-
dings into tokens for the text encoder, eliminating the need
for textual input. To mitigate the gap between generated
pseudo-text embeddings and real text embeddings, TES dis-
tills knowledge from real text embeddings corresponding to
labeled data. Additionally, TES aligns text and image for
the same instance, enforcing consistency between language
and vision while preventing overfitting to known classes.
This training approach renders TES equivalent to a special
finetuned text encoder with only visual input. From another
perspective, our TES can be considered as performing an
image captioning task [31].

To leverage such multi-modal features in the GCD task,
we propose a dual-branch multi-modal joint training strat-
egy with a cross-modal instance consistency objective.
One branch focuses on visual information, while the other
branch supplements it with text information. Through joint
learning on the GCD task, visual and semantic informa-
tion aspects mutually enhance each other. Furthermore, our
cross-modal instance consistency objective enforces the in-
stance have the same relationship in both visual and text
modalities with anchors constructed by labeled instances,
promoting the interaction and alignment of visual and text
embedding space. With the supplementation of text em-
beddings generated by TES and an appropriate dual-branch
training strategy, the multi-modal features correct the classi-
fication hyperplane, enhancing discriminative ability while
reducing bias issues.

To summarize, our contributions are as follows:

* To tackle the problem that the text encoder can not be
used on the unlabelled data, we propose a TES module
converting visual embeddings into tokens of the CLIP’s
text encoder to generate pseudo text embeddings.

* Through the proposed cross-modal instance consistency
objective in our dual-branch framework, information of

different modalities mutually enhances each other, pro-
ducing more discriminative classification prototypes.

* Our method achieves state-of-the-art results on multiple
benchmarks, providing GCD a multi-modal paradigm.

2. Related Works

Novel Class Discovery (NCD). NCD can be traced back
to KCL [18], where pairwise similarity generated by a sim-
ilarity prediction network guides clustering reconstruction,
offering a constructive approach for transfer learning across
tasks and domains. Early methods are based on two objec-
tives: pretraining on labeled data and clustering on unla-
belled data. RS [16] performs a self-supervised pretrain-
ing on both labeled and unlabelled data, alleviating the
model’s bias towards known classes. Simultaneously, RS
proposes knowledge transfer through rank statistics, which
has been widely adopted in subsequent research. [49] pro-
poses a two-branch learning framework with dual ranking
statistics, exchanging information through mutual knowl-
edge distillation, which is similar to our approach to some
extent. Differently, our two branches focus on semantic
and visual information rather than local and global char-
acteristics in [49]. In order to simplify NCD approaches,
UNO [13] recommends optimizing the task with a unified
cross-entropy loss using the multi-view SWAV [4] exchange
prediction strategy, which sets a new paradigm.

Generalized Category Discovery (GCD). Recently,
GCD [41] extends NCD to a more realistic scenario, where
unlabelled data comes from both known and unknown
classes. GCD [41] employs a pre-trained vision trans-
former [11] to provide initial visual representations, fine-
tuning the backbone through supervised and self-supervised
contrastive learning on the labeled and the entire data.
Once the model learns discriminative representations, semi-
supervised k-means are used for classification by constrain-
ing the correct clustering of labeled samples. As an emerg-
ing and realistic topic, GCD is gradually gaining attention.
PromptCAL [48] propose a two-stage framework to tackle
the class collision issue caused by false negatives while
enhancing the adaptability of the model on downstream
datasets. SimGCD [45] introduces a parametric classifi-
cation approach, addressing the computational overhead of
GCD clustering while achieving remarkable improvements.
Specifically, SimGCD adds a classifier on top of GCD and
jointly learns self-distillation and supervised training strate-
gies. uGCD [43] examines the taxonomy bias in previous
methods by introducing the Clevr4 dataset and employs the
mean-teacher technique and a more efficient training strat-
egy thus achieving remarkable performance improvements.
CLIP-GCD [33] mines text descriptions from a large text
corpus to use the text encoder and simply concatenates vi-
sual and text features for classification. In contrast, our



method focuses on the dataset itself, without introducing
additional corpus. Most recently, TextGCD [52] collects
many text tags from multiple benchmarks and leverages
LLM:s to enhance these tags, constructing a visual lexicon.
It then generates textual descriptions for each sample based
on the similarity between the visual lexicon and visual fea-
ture. Different from these methods, our GET employs CLIP
to introduce multi-modal information into the task without
relying on any additional databases or large models.
Vision-Language Pre-training.  Vision-Language pre-
training [6, 7,9, 12, 14, 25] aims to train a large-scale model
on extensive image-text data, which, through fine-tuning,
can achieve strong performance on a range of downstream
visual-language tasks. Some studies [8, 24, 27, 28, 39]
achieve improved performance in various image-language
tasks by modeling image-text interactions through a fu-
sion approach. However, the need to encode all image-text
pairs in the fusion approach makes the inference speed in
image-text retrieval tasks slow. Consequently, some stud-
ies [19, 36] propose a separate encoding of images and
texts, and project image and text embeddings into a joint
embedding space through contrastive learning. CLIP [36]
uses contrastive training on large-scale image-text pairs,
minimizing the distance between corresponding images and
texts while simultaneously maximizing the distance be-
tween non-corresponding pairs. The strong generalization
capabilities and multi-modal properties of CLIP prompt us
to introduce it to the GCD Task.

3. Preliminaries

3.1. Problem formulation

In the context of GCD, the training data D is divided into
a labeled dataset D; = { z, yl }J\il € X x ), and an

unlabelled dataset D,, = {(x¥, y! )}i=1 € X x ),, where
Y, and ), represent the label space while ), C ), and
D = D, UD,. |V and |V,,| represent the number of cate-
gories for labeled samples and unlabelled samples, respec-
tively. Following the setting in [4 1, 45], we assume the class
number of new classes |V, \);| is known, or it can be esti-
mated through some off-the-shelf methods [15, 41]. The
goal of GCD is to correctly cluster unlabelled samples with
the help of labeled samples.

3.2. Parametric GCD method (SimGCD)

In this paper, we tackle the GCD problem in a parametric
way which is proposed by SimGCD [45]. It trains a unified
prototypical classification head for all new/old classes to
perform GCD through a DINO-like form of self-distillation.
Specifically, it includes two types of loss functions: repre-
sentation learning and parametric classification. For rep-
resentation learning, it performs supervised representation
learning [20] Lsc0n, on all labeled data and self-supervised

contrastive learning L., on all training data, the loss func-

tions are as follows:
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where N; denotes the indices of other images with the same
semantic label as x; in a batch, B; corresponds to the la-
beled subset of the mini-batch B, 7. and 7. are temperature
values. For visual embeddings z; and 2} of two views x;
and x generated by the image encoder, an MLP layer g(-)
is used to map z; and 2} to high-dimensional embeddings
h; = g(z;) and b, = g( 1). For parametric classification,
all labeled data are trained by a cross-entropy loss £ and
all training data are trained by a self-distillation loss £:
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where o(-) is the softmax function, p; and p,” are the out-
puts of two views x; and z; on the prototypical classifier, re-
spectively. 75 is a temperature parameter and 7 is a sharper
version. #(-) denotes the cross-entropy function, y; is the
corresponding ground truth of x;, and o(p,’, ) is the soft
pseudo-label of x;.

In addition, SimGCD also introduces a mean-entropy
maximization regularization term H (P) to prevent trivial
solutions, where H(-) is the entropy of predictions [37],

P = ﬁ > e (0(p/,75) + o(p;, 7s)) is the mean soft-
max probability of a batch. By using the above loss func-
tions and regularization term to train the model, SimGCD
has achieved significant improvements, however, it strug-
gles with performance on visually similar categories due to
the use of single visual modality information.

4. Our Method

In this paper, we propose GET, which addresses the GCD
task in a multi-modal paradigm. As shown in Fig. 2,
our GET contains two stages. In the first stage, we learn
a text embedding synthesizer (TES, in Sec. 4.1) to gener-
ate pseudo text embeddings for each sample. In the second
stage, a dual-branch multi-modal joint training strategy with
cross-modal instance consistency (in Sec. 4.2) is introduced
to fully leverage multi-modal features.
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Figure 2. Overview of our GET framework. (a) In the first stage, we introduce a text embedding synthesizer that generates pseudo text
embeddings for unlabelled data. TES learns a linear mapping that transforms image features into input tokens for the text encoder. The
resulting pseudo text embeddings are then used for joint training in the second stage. (b) We proposed a dual-branch multi-modal joint
training framework with a cross-modal instance consistency objective in the second stage. Two branches utilize the same parameterized
training strategy [45] while focusing on text and visual information, respectively. (c) Our cross-modal instance consistency objective makes

visual and text information exchange and benefit from each other.

4.1. Text embedding synthesizer

The absence of natural language class names for unlabelled
data makes it challenging to introduce text information into
the GCD task. In this paper, we attempt to generate pseudo
text embeddings aligned with visual embeddings for each
image from a feature-based perspective.

Inspired by BARON [46], which treats embeddings
within bounding boxes as embeddings of words in a sen-
tence to solve the open-vocabulary detection task, we pro-
pose a text embedding synthesizer (TES). Specifically,
our TES leverages the property that CLIP can generate
aligned vision-language features, converting visual embed-
dings into tokens of the CLIP’s text encoder to generate
pseudo text embeddings for each sample. The architecture
of TES is shown in Fig. 2 (a). For each image x; in a mini-
batch, we use CLIP’s image encoder to obtain its visual em-
bedding z}. A single fully connected layer [ is used to map
the visual embedding to pseudo tokens that serve as input
to the CLIP’s text encoder, thus generating corresponding
pseudo text embeddings 2.

The objective of TES contains an align loss on all sam-
ples and a distill loss on labeled samples. To align the gen-
erated pseudo text embeddings 2! with their correspond-

ing visual features z7, our align loss leverages the modal-

ity alignment property of CLIP’s encoders, pulling correct
visual-text embedding pairs closer while pushing away the
incorrect ones. The align loss consists of symmetric com-

ponents L7, on and Eall gn? calculated as:
o =k S log SR A/T)
align — vT st
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where 2! and 2V are f5-normalised, and 7, is a temperature
parameter. Thus, the align 108s is Latign = L3}, + Litign-
To ensure that our generated pseudo text features reside
in the same embedding space as real text features and main-

tain consistency, we introduce a distill loss L g;s¢i1

exp (27 70)
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where T' € |);| X dim are the real text embeddings of |}
semantic labels, n; € ) indexes the corresponding class
name of x; among all known class names, 7'(j) denotes the
Jj-th real text embeddings of all known class names and 1,
is the indicator function. Each vector in T is produced by
the text encoder using the prompt “a photo of a {CLS}”
where {CLS} denotes the corresponding class name.

The overall objective of our text embedding synthesizer
is L1es = Lalign + Laistsu. The distill loss is used to
guide pseudo text embeddings of the network’s output to-
wards the real semantic corresponding space and adapt the
model to the distribution of the dataset, while the align loss
prevents overfitting to known classes and enforces the con-
sistency between two modalities. Moreover, we introduce a
multi-view strategy for TES. Specifically, we calculate both
the align loss Ly and distill loss Ly for two differ-
ent views x; and x;’ of the same image in a mini-batch.
This further implicitly enhances the instance discriminative
nature [47] of our TES training, allowing different views
of the same labeled image to generate identical pseudo text
embeddings. The generated pseudo text embeddings £f are
then used for joint training in the second stage.

4.2. Dual-branch multi-modal joint training

Intuitively, the introduction of multi-modal information can
have a positive impact on the GCD task. Textual informa-
tion can serve as an effective complement to visual infor-
mation, enhancing the model’s discriminative capabilities.
However, how to effectively utilize visual and text informa-
tion in the GCD task and make the most of their respective
roles remains challenging. In this paper, we propose a dual-
branch architecture as illustrated in Fig. 2 (b), which fo-
cuses on semantic and visual information, respectively. We
employ the same parametric training strategy (in Sec. 3.2)
for each branch to promote that the model has aligned and
complementary discriminative capabilities for visual and
text features of the same class. Furthermore, we introduce
a cross-modal instance consistency loss, which constrains
the instance relationships of samples in both visual and text
spaces, enabling the two branches to learn from each other.
We use the indicator v to represent the visual concept while
t for the text concept.

Visual-branch.  The objective of the visual branch con-
tains a representation learning part and a parametric clas-
sification part. Given a visual embedding z} of image x;
generated by the image encoder, an MLP layer g(-) is used
to map z! to a high-dimensional embedding h; = g(z?).
Meanwhile, we employ a prototypical classifier 7)(-) to gen-
erate classification probability distribution p¥ = n(z?).
Simply replace all the high-dimensional embedding h (the
subscript is omitted for brevity) in Eq. (1) and Eq. (2)
with its corresponding visual branch version h" can ob-

tain the the supervised contrastive loss LY., and the self-

supervised contrastive loss L!.,,,. The overall representa-

tion learning loss is balanced with A, written as:
o (1 - )‘)ﬁv con * (8)

rep ucon
For the parametric classification part, just replace p, and
p;’ of Eq. (3) and Eq. (4) with p} and pf’ can obtain the
cross-entropy loss L3, and the self-distillation loss L .
Thus, the classification loss is £, = (1 =) LY, + AL -
The overall objective of the visual branch is as follows:
Lipy=Lo + LY. )

rep

+ ALY

Text-branch.  Our text branch simply adopts the same

training strategy as the visual branch. That is, in particular,
given a text embedding 22 generated by TES, we first input
itinto a fully connected layer to gain a learnable text embed-
ding 2? while change its dimension. Simply replace h; in
the representation learning objective Ly, with hf = g(ﬁfl)
and replace pY in classification parts £Z with pt = n(2)
can yield the corresponding text objectives L’ﬁep and LY.
In other words, changing the visual conception indicator v
into text conception indicator ¢/ can get the corresponding
objectives for the text branch. Thus, the overall objective of
our text branch can be formally written as £}, = L, + L

To mitigate the bias between old and new classes,
we extended the mean-entropy regularization [1] to
a multi-modal mean entropy regularization H,,, =
H(B,ms Dmm)s here D, can calculate by p,,, =
ﬁ >iep (@(PY,75) + o(p!, 7s)). In this way, the predic-
tion probabilities in different modalities for each prototype
are constrained to be the same, preventing trivial solutions.

Cross-modal instance consistency objective. In or-
der to enable the two branches to learn from each other
while encouraging agreement between two different modes,
we propose a cross-modal instance consistency objective
(CICO), shown in Fig. 2 (c). Our CICO has the same form
of mutual knowledge distillation as [49], but we distill the
instance consistency between the two branches. For each
mini-batch B, we choose its labeled subset B; containing
K categories as anchor samples, calculate the visual and
text prototypes for K categories as visual anchors P, and
text anchors P;, respectively. We define the instance rela-
tionships in visual and text branches as:
sy :U(zE’TPv) ,

(10)
Sf :J(izl—rtpt) .

Thus our CICO can formally written as:

1 .
> (Dre(stllsy) + Drer(stlls)) , (11)
eB

Lcico = 38|

where Dp is the Kullback-Leibler divergence. Mutual
knowledge distillation on instance relationships for two



CUB Stanford Cars FGVC-Aircraft CIFAR10 CIFAR100 ImageNet-100
Method All Old New AIll Old New AIll Old New AIll Old New AIll Old New All Old New
k-means [29] 343 389 32.1 12.8 10.6 13.8 16.0 144 16.8 83.6 85.7 825 52.0 52.2 50.8 72.7 755 713
RS+ [16] 33.3 51.6 24.2 283 61.8 12.1 269 36.4 22.2 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8
UNO+ [13] 35.1 49.0 28.1 35.5 70.5 18.6 40.3 564 32.2 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9
ORCA [2] 35.3 45.6 30.2 23.5 50.1 10.7 22.0 31.8 17.1 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9
GCD [41] 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 469 91.5 979 88.2 73.0 76.2 66.5 74.1 89.8 66.3
GPC [50] 55.4 582 53.1 42.8 59.2 32.8 46.3 425 479 922 982 89.1 779 85.0 63.0 76.9 943 71.0
DCCL [34] 63.5 60.8 64.9 43.1 55.7 36.2 - - - 963 96.5 969 753 76.8 70.2 80.5 90.5 76.2
PromptCAL [48] 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3 97.9 96.6 98.5 81.2 84.2 753 83.1 92.7 783
SimGCD [45] 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9
uGCD [43] 65.7 68.0 64.6 56.5 68.1 50.9 53.8 554 53.0 - - - - - - - - -
LegoGCD [3] 63.8 71.9 59.8 57.3 75.7 484 55.0 61.5 51.7 97.1 943 98.5 81.8 81.4 82.5 86.3 945 82.1
GCD-CLIP 57.6 652 53.8 65.1 75.9 59.8 45.3 44.4 458 94.0 97.3 923 748 79.8 64.6 75.8 87.3 70.0
SimGCD-CLIP 71.7 76.5 69.4 70.0 83.4 63.5 54.3 584 522 97.0 942 984 81.1 85.0 73.3 90.8 955 88.5
GET (Ours) 77.0 78.1 76.4 78.5 86.8 74.5 58.9 59.6 58.5 97.2 94.6 98.5 82.1 85.5 75.5 91.7 95.7 89.7

Table 1. Results (%) on fine-grained and generic datasets. The best results are highlighted in bold.

modalities makes visual and text flows exchange and benefit
from each other, thus the two branches can serve as comple-
mentary discriminative aids to each other.
The overall optimization objective of our method is:
Lowa = Ly + Ly — €Hppm + AcLarco . (12)
Since information from different modalities is exchanged
and learned through CICO and injected into the visual back-
bone, we utilize the last-epoch visual branch for inference.

5. Experiments
5.1. Experimental setup

Datasets. We evaluate our method on multiple
benchmarks, including three image classification generic
datasets (i.e., CIFAR 10/100 [22] and ImageNet-100 [10]),
three fine-grained datasets from Semantic Shift Bench-
mark [42] (i.e., CUB [44], Stanford Cars [21] and FGVC-
Aircraft [30]), and three challenging datasets (i.e., Herbar-
ium 19 [40], ImageNet-R [17] and ImageNet-1K [10]). We
are the first to introduce ImageNet-R into the GCD task,
which contains various renditions of 200 ImageNet classes,
thus challenging the GCD’s assumption that the data comes
from the same domain. The data splits are reported in Supp.

Evaluation and implementation details. Following
standard evaluation protocol in [41, 45], we evaluate the
performance with clustering accuracy (ACC). We use a
CLIP [36] pre-trained ViT-B/16 [11] as the image and text
encoder. In the first stage, we train a fully connected layer.
In the second stage, we remove the projector of the im-
age encoder, resulting in features with a dimension of 768.
Other details and the pseudo-code can be found in Supp.

5.2. Comparison with state of the arts

In this section, we compare GET with several state-of-
the-art methods. GCD [41] and SimGCD [45] provide
paradigms for non-parametric and parametric classification,
thus we replace their backbone with CLIP for a fair compar-
ision, denoted as GCD-CLIP and SimGCD-CLIP.

Evaluation on fine-grained and generic datasets.  As
shown in Tab. 1, our method achieves consistently remark-
able success on all three fine-grained datasets. Specifically,
we surpass SimGCD-CLIP by 5.3%, 8.5%, and 4.6% on
‘All’ classes of CUB, Stanford Cars, and Aircraft, respec-
tively. In fine-grained datasets, the visual conceptions of
distinct classes exhibit high similarity, making it challeng-
ing for classification based solely on visual information.
However, their text information can provide additional dis-
criminative information. Consequently, our GET signifi-
cantly enhances classification accuracy through the recipro-
cal augmentation of text and visual information flows. In
Tab. 1, we also present the performances for three generic
datasets. Due to the low resolution of the CIFAR dataset and
model biases (CLIP itself performs poorly on CIFAR100,
with a zero-shot performance of 68.7), the results for novel
classes are inferior compared to the DINO backbone. How-
ever, despite the inherent limitations in the discriminative
capability of CLIP itself, our method still achieves an im-
provement of 0.4% on ‘Old’ classes of CIFAR10 and 2.2%
on ‘New’ classes of CIFAR100, compared to SimGCD-
CLIP. For ImageNet-100, SimGCD-CLIP has achieved an
exceptionally saturated result of 90.8% on ‘All’ classes, fur-
ther advancements pose considerable challenges. However,
leveraging the additional modality information, GET ele-
vates the performance ceiling to an impressive 91.7%.



Herbarium 19 ImageNet-1K  ImageNet-R

Stanford Cars CIFAR100

Dual-branch Concat Mean

Method All Old New All Old New All Old New All Old New All Old New
k-means [29] 13.0 122 134 - - - - - - (1) X v X 689 79.1 64.0 79.9 85.5 68.7
RS+ [16] 279558 128 - - - - - - 2 X X v 72.085.0 65.6 81.1 843 74.8
UNO+ [13] 283537 147 - - - - - - 3) 4 X X 785 86.8 74.5 82.1 85.5 75.5
ORCA [2] 209309 155 - - - - - -

uGCD [43] 458 619 372 - - - - Table 4. Comparison with different fusion methods.

LegoGCD [3] 45.1 57.4 38.4 62.4 79.5 53.8 - - -

Method Total Params All Old New

GCD [41] 35.4 51.0 27.0 52.5 72.5 42.2 32.5 58.0 18.9 Py SGCDCLIP M 717 765 694
SimGCD [45] 44.0 58.0 36.4 57.1 77.3 46.9 29.5 48.6 19.4 asetine 1mt o : LB B
‘ WordNet 155.8M  69.8 77.1 66.2

GCD-CLIP 373 51.9 29.5 55.0 65.0 50.0 44.3 79.0 25.8 Text-Retrieval COAM 1558M 723 791 689

SimGCD-CLIP 48.9 64.7 40.3 61.0 73.1 54.9 54.9 72.8 45.3

BLIP (ViT-L) 625.8M  67.1 74.3 63.5

GET (Ours)  49.7 64.5 41.7 62.4 74.0 56.6 58.1 78.8 47.0 VoA BLIP-2 (op2.7b)  39B 713 73.5 70.2
Table 2. Results (%) on more challenging datasets. Captionin BLIP (ViT-L) 625.8M  40.5 54.6 334
priomng BLIP-2 (opt2.7b)  3.9B  42.6 56.1 35.8

TES Dual-branch CICO Stanford Cars CIFAR100 " o . $E§ (O/urz) iggix ZZ(; ;gé ‘;gg
All Old New All Old New eature-Generation w/0 Latign . . . .

TES w/o Laieeiy 165.IM  75.3 77.5 74.2

a1 x X X 70.0 83.4 63.5 81.1 85.0 73.3
2 v v X 762 853 71.7 81.0 85.3 72.3
3 v 4 v 785 86.8 74.5 82.1 85.5 75.5

Table 3. Ablation study of different components.

Evaluation on more challenging datasets. = As shown
in Tab. 2, GET outperforms all other methods for both ‘All’
and ‘New’ classes on Herb19 and ImageNet-1K datasets. In
particular, our method achieves a notable improvement of
1.4% and 1.7% on ‘New’ classes of Herb19 and ImageNet-
1K, respectively. Furthermore, the suboptimal performance
of GCD and SimGCD with the DINO backbone on the
ImageNet-R dataset highlights the difficulty of DINO in
discovering new categories with multiple domains. Despite
multiple domains for images of the same category, their tex-
tual information remains consistent. Our method effectively
integrates text information, resulting in a substantial im-
provement of 3.2% and 6.0% over the sota for ‘All’ classes
and ‘Old’ classes, respectively. It is worth noting that, ow-
ing to the text consistency within the same category, our text
branch achieves remarkable 62.6% and 63.5% accuracy for
‘All’ classes of Imagenet-R and ImageNet-1K, respectively.

5.3. Ablation study and analysis

Effectiveness of different components. To evaluate the
effectiveness of different components, we conduct an abla-
tion study on SCars and CIFAR100 in Tab. 3. Comparing
(2) with (1), leverage the text features generated by TES,
resulting in a 6.2% improvement on SCars’ ‘All’ classes
and a 0.3% improvement on CIFAR100’s ‘Old’ classes.
Furthermore, comparing (3) with (1), CICO enables the
two branches to exchange information and mutually ben-
efit from each other, resulting in remarkable improvements
of 11% on SCars’ ‘New’ and 2.2% on CIFAR100’s ‘New’.

Table 5. Experiments on different pseudo text embeddings.

Comparison with different fusion methods. In Tab. 4,
we compare our dual-branch strategy with other modality
fusion methods, including concatenation and mean. Al-
though they may show improvements due to the multi-
modal information, we demonstrate that joint learning of
the two branches is more effective as it encourages the
model to have complementary and aligned discriminative
capabilities for visual and text features of the same class,
leading to more discriminative multi-modal prototypes.

Effectiveness of TES. To demonstrate the superiority of
TES, we conduct experiments that replaced the embeddings
generated by TES with embeddings obtained through Text-
Retrieval, VQA, and Captioning on the CUB dataset. For
Text-Retrieval, we retrieve the most similar text for each
image from two corpora (WordNet [32] and CC3M [38])
based on the cosine similarity between the image and text
embeddings. We use BLIP [25] and BLIP-2 [26] to per-
form the Captioning and use the question “What’s the name
of the bird in the image?” to perform VQA. As in Tab. 5,
due to the high visual similarity in fine-grained images, cat-
egory names retrieved or generated through VQA are often
imprecise, making them less effective. Meanwhile, caption-
ing methods tend to describe object poses and scenes rather
than class-specific information, leading to varied captions
for samples of the same class, which significantly harms
category discovery. Our method achieves the best perfor-
mance with moderate parameters. We provide additional
experiments about TES in Supp, including its architectural
design, feature distribution, and flexibility.

Results using different prompts. In our method, we use
a simple prompt: “a photo of a {CLS}.” Tab. 6 presents ex-
perimental results exploring the use of alternative prompts:



5.4. Qualitative results

Attention map visualization.

As in Fig. 3, compared

CUB Stanford Cars
Prompts
All Old New All Old New
(€))] 77.0 78.1 76.4 78.5 86.8 74.5
2) 76.3 78.2 75.4 78.5 88.2 73.8
3) 76.8 78.7 75.8 78.6 90.4 72.9
@) 78.3 77.6 78.7 79.1 88.8 74.3

Table 6. Results using different prompts.

Methods NEV TV-100

All Old New All Old New
CLIP(zero-shot)  10.7 - - 1.93 - -
SimGCD 547 88.0 380 352 503 292
SimGCD-CLIP  79.1 96.7 70.3 557 758 478
GET (Ours) 853 96.0 80.0 571 773 49.2

Table 7. The results on the NEV and TV-100 datasets.

(1) “a photo of a {CLS},” (2) “a photo of a {CLS}, which
is a type of bird/car,” (3) descriptions of {CLS} generated
by LLM (GPT40-mini), and (4) average the textual features
of (1) to (3). Our prompt is simple yet effective, while more
finely designed prompts can further improve performance.

Discussion about using CLIP in GCD. A key purpose
of GCD is to discover novel classes, which highly rely
on the initial representation discrimination provided by the
backbone model. Due to the strong generalization ability of
CLIP, it can encode more discriminative features, making it
a natural idea to introduce CLIP into the GCD task. One
concern is that CLIP may have seen unknown classes or
class names in GCD. Therefore, we discuss the significance
of using CLIP in GCD from three perspectives. Method-
ological Significance: Even CLIP is pre-trained on a vast
dataset with potential overlap, its knowledge is implicit
and unstructured. Effectively using it for GCD demands
novel methodologies, particularly in exploring how to use
the text encoder for unlabelled data. The improvements of
our method over SimGCD-CLIP validate this significance.
Forward-looking Significance: To evaluate the ability of
category discovery methods in scenarios unseen by CLIP,
we constructed a small fine-grained dataset of new energy
vehicles (NEV) introduced in 2023, where CLIP lacks prior
knowledge. As shown in Tab. 7, experiments on NEV and
TV-100 [53](a TV series dataset that the pre-trained CLIP
model has not been exposed to) demonstrate that even for
categories not seen by CLIP, leveraging the text modality re-
mains crucial for effective category discovery. This serves
as a forward-looking exploration of how CLIP’s general-
ization can address future GCD tasks involving truly novel
data. Practical Implications: Exploring CLIP’s potential
in realistic scenarios is meaningful, thus, we present experi-
ments on medical and ultra-fine-grained datasets in SSSupp.
Our work lays the foundation for leveraging CLIP to ad-
dress challenging GCD applications.

to SimGCD-CLIP, our method additionally focuses on the
feather texture of birds, which is crucial for distinguishing
visually similar bird species. With the assistance of text in-
formation, the attention maps of our visual branch become
more refined, focusing on more discriminative regions.
SimGCD-CLIP

Ours

Figure 3. Attention map visualization of class tokens.

The t-SNE visualization. Fig. 4 shows the t-SNE visual-
ization of visual and text features on the randomly sampled
20 classes of the CUB dataset. Both the visual and text fea-
tures of our method exhibit clearer and compacter clusters.
We provide more visualizations and cluster results in Supp.

B

¥
&

e AR
& @ 3 e

(a) SimGCD-CLIP (b) Ours (Visual Branch)

(c) Ours (Text Branch)

Figure 4. The t-SNE visualizations.

6. Conclusions

In this work, we propose to leverage multi-modal informa-
tion to solve the GCD task. In particular, we introduce a text
embedding synthesizer to generate pseudo text embeddings
for unlabelled data. Our text embedding synthesizer mod-
ule makes it possible to use CLIP’s text encoder, thus un-
locking the multi-modal potential for the GCD task. Mean-
while, we use a dual-branch training strategy with a cross-
modal instance consistency objective, which facilitates col-
laborative action and mutual learning between the different
modalities. Our research extending the GCD to a multi-
modal paradigm and the superior performance on multiple
benchmarks demonstrates the effectiveness of our method.
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