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Abstract

Continual learning requires models to train continuously
across consecutive tasks without forgetting. Most existing
methods utilize linear classifiers, which struggle to main-
tain a stable classification space while learning new tasks.
Inspired by the success of Kolmogorov-Arnold Networks
(KAN) in preserving learning stability during simple con-
tinual regression tasks, we set out to explore their potential
in more complex continual learning scenarios. In this pa-
per, we introduce the Kolmogorov-Arnold Classifier (KAC),
a novel classifier developed for continual learning based on
the KAN structure. We delve into the impact of KAN’s spline
functions and introduce Radial Basis Functions (RBF) for
improved compatibility with continual learning. We replace
linear classifiers with KAC in several recent approaches
and conduct experiments across various continual learn-
ing benchmarks, all of which demonstrate performance im-
provements, highlighting the effectiveness and robustness
of KAC in continual learning. The code is available at
https://github.com/Ethanhuhuhu/KAC.

1. Introduction

Deep learning models are typically trained on a fixed dataset
in a single session, achieving impressive performance on
various static tasks. In contrast, real-world scenarios con-
tinuously evolve, necessitating models that can learn in-
crementally from a data stream. However, in such scenar-
ios, these models often encounter a significant challenge,
known as catastrophic forgetting [12]. Continual learn-
ing [2, 8, 18, 47] investigates how to effectively train models
in such dynamic environments with sequential data expo-
sure, aiming to adapt and avoid forgetting over time.

Class incremental learning (CIL) [50], as a key challenge
in continual learning, has garnered extensive research inter-
est. It involves the continuous introduction of new classes
with ongoing tasks, requiring the model to conduct classifi-
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Figure 1. Brief comparison between conventional linear classi-
fier and our Kolmogorov-Arnold classifier. The solid lines rep-
resent activated weights, while the dashed ones represent sup-
pressed weights. (a) Conventional linear classifiers activate each
weight equally across all tasks, resulting in irrelevant weights be-
ing equally updated in the new task.. (b) our Kolmogorov-Arnold
Classifier learns class-specific learnable activations for each chan-
nel across all categories, minimizing forgetting caused by irrele-
vant weight changes.

cation on all encountered classes after training on new tasks.
Most CIL methods retain exemplars and employ techniques,
such as knowledge distillation [9, 50, 59] or dynamic archi-
tectures [6, 10, 31, 60], to mitigate forgetting. With the de-
velopment of pre-trained models, numerous studies [44, 63]
have attempted to explore the applications of pre-trained
models in CIL, achieving impressive results. Among these,
prompt-based approaches [16, 52, 57, 58] have attracted
considerable attention.

For existing methods, some [19, 44, 62] focus on fea-



ture space design through carefully crafted classifiers and
training or inference strategies, achieving excellent perfor-
mance. These studies demonstrate that a well-structured
feature space can effectively mitigate the forgetting issue
in that a stable distribution is crucial for continual clas-
sification tasks while the design of classifiers is essen-
tial for constructing the feature space and reducing for-
getting in continuous tasks. However, most existing ap-
proaches [16, 52, 64] use linear classifiers or nearest class
mean classifiers (NCM) [50], with limited research focused
on developing a specific classifier for CIL to effectively mit-
igate catastrophic forgetting, which warrants further study.

Recently, a novel architecture, Kolmogorov–Arnold Net-
works (KAN) [41] , has been proposed, demonstrating natu-
ral effectiveness in continual learning. The authors compare
KAN with Multi-Layer Perceptrons (MLP) [25] on a toy
continual 1D regression problem, which requires the model
to fit 5 Gaussian peaks sequentially. KAN exhibits superior
performance, effectively mitigating catastrophic forgetting,
attributed to the locality of splines and inherent local plas-
ticity. This locality allows KAN to identify relevant regions
for re-organization while maintaining stability in other ar-
eas during sequential tasks [41]. These findings motivate
us to explore the applications of KAN in more challenging
CIL tasks.

In this paper, we introduce the Kolmogorov-Arnold
Classifier (KAC), a plug-and-play classifier for Continual
Learning built upon the KAN architecture. Leveraging the
Kolmogorov-Arnold representation theorem [34], we inte-
grate learnable activation functions on the edges of the clas-
sifier. We find that the conventional KAN with B-spline
functions struggles with high-dimensional data, resulting in
insufficient model plasticity, which may reduce the model’s
adaptability when directly employed as a classifier. This
limitation forces models to undergo excessive updates when
learning new tasks, resulting in significant forgetting.

To address this, we explore spline functions and identify
Radial Basis Functions (RBF) as an effective alternative for
continual learning. By utilizing RBF in our KAC, we en-
hance the model’s ability to adapt CIL while minimizing
forgetting. Thanks to these learnable spline activations, the
KAC allows the model to select specific activation ranges
of interest for each channel while preserving the distribu-
tion of other parts, and RBF makes it more compatible with
CIL. As shown in Fig. 1b, these learnable activations help
the model select interesting parts of each channel and acti-
vate them for determination rather than activating all edges
like a simple linear classifier in Fig. 1a. This brings notable
benefits to class incremental learning. When new tasks ar-
rive, the learnable activation functions assist the model in
selecting relevant parts of each channel for updating. This
prevents the drift of irrelevant features during the training
process for the new tasks. Meanwhile, the deactivated por-

tions of the old tasks remain unaffected by these updates,
reducing the forgetting of old tasks.

To demonstrate the superiority of KAC, we conduct ex-
periments on several prompt-based continual learning ap-
proaches, which are built upon a pre-trained backbone
where the classifiers play a key role in these approaches.
The models employing our method achieve significant
improvement across various CIL scenarios on multiple
datasets by simply replacing the linear classifier with our
KAC without making any other modifications or hyperpa-
rameter adjustments. Additionally, experiments conducted
in the Domain Incremental Learning (DIL) [56] setting re-
veal that our method can also improve performance, demon-
strating its effectiveness and robustness.

Our main contributions can be summarised as follows:
• We explore the application of Kolmogorov-Arnold Net-

works (KAN) in continual learning and analyze its weak-
nesses when employed in continual learning and how to
enhance its compatibility with such tasks.

• We introduce the Kolmogorov-Arnold Classifier (KAC),
a novel continual classifier based on the KAN structure
with Radial Basis Functions (RBF) as its basis functions.
KAC enhances the stability and plasticity of CIL ap-
proaches.

• We integrate our KAC into various approaches and vali-
date their performance across multiple continual learning
benchmarks. The results demonstrate that KAC can ef-
fectively reduce forgetting in these methods.

2. Related Work

Class Incremental Learning aims to learn a sequence
of classification tasks sequentially, where the number of
classes increases with each task. The primary chal-
lenge in it is catastrophic forgetting[43]. Several stud-
ies work on it and they can be broadly categorized into
three main strategies: regularization-based, structure-based,
and replay-based methods. Regularization-based meth-
ods reduce forgetting by employing knowledge distillation
techniques[9, 59, 61] or imposing constraints on key model
parameters[29, 32, 40]. Structure-based methods[6, 10, 27,
54] mitigate forgetting through dynamic network architec-
tures. Replay-based methods retain a small portion of old
data[28, 50] or use auxiliary models[14, 30, 51] to generate
synthetic data, which are combined with new-class data to
update the model.

CIL with Pre-trained Models have demonstrated their
competitive performance in Class Incremental Learning due
to their strong transferability. Techniques such as LAE [13]
and SLCA [63] enhance model adaptation through EMA-
based updates and dynamic classifier adjustments. Ran-
PAC [44] employs random projection to improve contin-
ual learning, while EASE [64] focuses on optimizing task-



specific, expandable adapters to enhance knowledge reten-
tion. Benefiting from parameter-efficient tuning in NLP,
prompt-based methods have achieved promising results in
Class Incremental Learning. These approaches utilize adap-
tive prompts to guide frozen transformer models, facilitat-
ing efficient task-specific learning without modifying en-
coder parameters. Techniques like L2P [58], DualPrompt
[57], S-Prompts [56], CODA-Prompt [52], HiDe-Prompt
[55], and CPrompt [15] introduce diverse prompt selection
strategies to improve task learning, knowledge retention,
and model robustness.

Kolmogorov-Arnold Networks (KAN) [37] is a novel net-
work architecture based on the Kolmogorov-Arnold repre-
sentation theorem [34]. It represents multivariate functions
as combinations of multiple univariate functions and uses
nonlinear spline functions for approximation. Some explo-
rations focus on how to apply KAN to solve scientific prob-
lems [3, 26, 33], while others seek various basis functions to
enhance performance [1, 3, 37]. Many works [4, 7, 17, 42]
apply KAN across various fields and investigate how to ef-
fectively leverage its advantages in these domains. These
studies encourage us to explore the application of KAN in
continual learning.

3. Method
3.1. Preliminaries

Class Incremental Learning. In Class Incremental Learn-
ing (CIL), a model needs to learn classes step by step. At
each step t, the model needs to learn the classes specific
to that step, denoted as Yt, with only access to the cur-
rent dataset Dt = {(xi

t, y
i
t)}

nt
i=1, where xi

t represents an
input image and yit is its corresponding label. A key chal-
lenge in CIL is how to maintain the stability of the model to
avoid catastrophic forgetting [12] while learning new tasks.
With a model consisting of a backbone F , and a classifier
h ∈ Rn×C , where n denotes the embedding dimension and
C represents the total number of learned classes, the model
is tasked with predicting the class label y = h(F (x)) ∈ Y
for test samples from new classes as well as samples from
previously encountered tasks.

Kolmogorov–Arnold Networks. Kolmogorov–Arnold
Network (KAN) [41] is a novel model architecture that
serves as a promising alternative to multi-layer percep-
trons (MLPs) [21, 25]. While MLPs rely on the Uni-
versal Approximation Theorem (UAT) [25], KANs are in-
spired by the Kolmogorov-Arnold representation Theorem
(KAT) [34]. KAT posits that any multivariate continuous
function f(x) defined on a bounded domain can be ex-
pressed as a finite composition of univariate continuous
functions through addition. The Kolmogorov-Arnold rep-
resentation theorem can be written as:

f(x) = f(x1, x2, ..., xn) =

2n+1∑
q=1

Φq

( n∑
p=1

ϕq,p(xp)
)
, (1)

in which Φq and ϕq,p are univariate functions for each vari-
able. KAN parametrizes the ϕq,p and Φq as B-spline curves,
with learnable coefficients of local B-spline basis functions
B(x) [49]. In practice, a residual connection, consisting
of a linear function with activation b(x) = silu(x) =
x/(1 + e−x), is linearly combined with the B-spline curve
spline(x) =

∑
i ωiBi(x) to form the final ϕ:

ϕ(x) = ωbb(x) + ωsspline(x), (2)

where the ωb and ωs represent the linear functions that con-
trol the overall magnitude of the activation function. Con-
sequently, a KAN layer can be expressed as:

xl+1 =


ϕl,1,1(.) ϕl,1,2(.) · · · ϕl,1,nl

(.)
ϕl,2,1(.) ϕl,2,2(.) · · · ϕl,2,nl

(.)
...

...
. . .

...
ϕl,nl+1,1(.) ϕl,nl+1,2(.) · · · ϕl,nl+1,nl

(.)


︸ ︷︷ ︸

Φl

xl.

(3)
The xl and xl+1 represent the input and output of a KAN

layer, while ϕl is the 1D univariate function matrix for each
layer. The KAN networks are constructed by stacking mul-
tiple KAN layers.

3.2. Conventional KAN layer is not a good continual
classifier

In [41], the authors present experimental results from a
toy 1D regression task, demonstrating that the locality of
splines can inherently avoid catastrophic forgetting. This
insight inspires us to introduce KAN to CIL. A straightfor-
ward way to leverage the locality of KAN is directly utiliz-
ing a KAN layer to develop a continual classifier, replacing
the linear classifier in CIL methods. To achieve this, we
simply replace the linear classifier h(x) with a KAN layer
that has an input dimension of d and an output dimension
of C. We compared their performances across several base-
line methods. The experimental results are shown in Fig. 2,
demonstrating that the simple substitution of replacing the
linear classifier with a KAN layer does not lead to any im-
provement, even achieving worse performance.

We decompose the KAN layer into two parts: the resid-
ual connection b(x) and the B-spline curve spline(x) and
individually replace the linear classifier with these two com-
ponents to investigate why directly introducing the KAN
layer increases forgetting. A surprising finding is that the
B-spline functions lead to a severe performance drop across
all baselines.
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Figure 2. Comparison of the accuracy curves of three recent approaches with different classifiers in the ImageNet-R 20-step scenario.
The x-axis represents the increasing number of tasks, while the y-axis shows the corresponding test accuracy at each step. The Baseline
indicates performance with a conventional linear classifier, while the other curves represent results with ablated KAN classifiers and our
Kolmogorov-Arnold Classifier.

To understand why the B-spline curve replacing the con-
ventional linear classifier leads to severe forgetting, we need
to delve deeper into the differences between linear layers
and splines. In high-dimensional complex data, spline func-
tions encounter the curse of dimensionality (COD) [20];
as the data dimensionality increases, the model struggles
with data approximation [22, 35, 45]. This is because
splines cannot effectively model the compositional structure
present in the data, while linear classifiers benefit from their
fully connected structure, allowing them to learn this struc-
ture effectively [23]. Although KAN networks mitigate
COD through approximation theory [41] by stacking KAN
layers, approximating high-dimensional function remains a
challenging problem for a single spline layer, whereas it is
relatively straightforward for conventional linear classifiers.

It is precisely the weak fitting ability of B-spline func-
tions on high-dimensional data that leads to severe forget-
ting when it is introduced into CIL. In CIL, a network typi-
cally consists of a backbone F that encodes images to fea-
ture embeddings and a classification head h, which serves
as a high-dimensional projection mapping the embeddings
to class probabilities. Most methods accommodate new
classes by adding classifiers while sharing the backbone
across all tasks. The final logits l for classification are al-
ways calculated as:

l = h(F (x)), h = [h1, h2, · · · , ht]. (4)

To prevent significant forgetting caused by changes in
the backbone that affect the feature space, the model must
maintain stable backbone parameters during training on
new tasks. Consequently, many methods use regular-
ization techniques to restrict changes in feature embed-
dings [31, 38, 59, 61]. However, due to the limited approx-
imation capability of a single B-spline layer, the model re-
quires more extensive updates to the backbone parameters
compared to conventional linear classifiers to achieve good

performance on new tasks. This extensive updating can
severely disrupt the feature space, leading to pronounced
forgetting.

Based on the above analysis, we believe that the weak fit-
ting ability of a single B-spline function prevents the model
from leveraging the locality of the KAN layer. There-
fore, we need to enhance the spline function’s fitting abil-
ity to adapt the KAN structure to CIL tasks. [36, 39] in-
dicates that, in specific senses, a shallow KAT-based layer
can break the COD problem when approximating high-
dimensional functions through designed basis functions
with particular compositional structures, motivates us to ex-
plore the types of basis functions that are compatible with
CIL.

3.3. Radial basis function is great for class incre-
mental learning

Several studies [44, 62, 65] assume that the classification
space follows a Gaussian space and develop approaches
based on this premise, achieving excellent performance. It
suggests that building a Gaussian classification space can
help models effectively learn new tasks while combating
catastrophic forgetting. Can we find a kind of basis func-
tion in this sense that allows a KAT-based layer function
as a continual classifier, addressing the COD problem and
benefiting CIL? The answer is yes!

FastKAN [37] proves that the B-splines basis function in
KAN [41] can be well replaced by Radial Basis Functions
(RBF) [5, 46]. We find this substitution brings more benefits
to CIL when KAN is introduced as a continual classifier as
shown later. A KAN layer with RBF is represented as:

f(x) =

n∑
p=1

Φp

N∑
i=1

ωp,iϕ(||xp − ci||), (5)

where ci represents a series of center points evenly dis-
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Figure 3. An overview of the pipeline of the proposed Kolmogorov-Arnold Classifier. For the input feature embeddings, we first normalize
them using a layer normalization, then pass them through a set of RBFs that activate them to learnable Gaussian distributions. Finally, we
weight all channels with WC to obtain the decision space for each class. The right side shows the process of Gaussian RBFs, which map
univariate variables to different Gaussian distributions centered at various points and weight these distributions with W c

q to derive the final
activation distribution for each channel across all classes. The output logits are sampled based on the channel values within the distribution
of each class. As tasks increase, new classes can be accommodated by simply expanding WC .

tributed within a specific range, with N denoting the to-
tal number of ci. And ϕ(.) is an RBF served as the basis
functions whose value solely depends on the distance be-
tween input xp and center point ci. The term ωp,i denotes
the weight for each ϕ. A Gaussian function with covariance
σi can be chosen as ϕ while it’s defined as:

ϕ(||xp − ci||) = exp
(
− (xp − ci)

2

2σ2
i

)
. (6)

While introducing the Gaussian RBF function as the ba-
sis function of KAN demonstrates faster evaluation speeds
and enhanced performance, as shown in [37], an inherent
Gaussian structure is also established with it, which can
serve as an effective compositional structure for CIL sce-
narios. With a series of Gaussian distributions N centered
at c = [c1, c2, · · · , cN ], the activation function for each di-
mension is formed by combining N Gaussian distributions,
and the distribution of each dimension can be represented
as a Gaussian mixture model:

N∑
i=1

ωp,iϕ(∥xp − ci∥) ∼
N∑
i=1

ωp,iN (ci, σ
2
i )

= ωp,1N (c1, σ
2
1) + ωp,2N (c2, σ

2
2)

+ · · ·+ ωp,NN (cN , σ2
N )

(7)
This mixture formulation preserves the multi-modal

characteristics of the original Gaussian components. The
final prediction for each class is then expressed as a
dimension-wise weighted combination of these Gaussian
mixtures:

f(x) =

n∑
p=1

Φp

[
N∑
i=1

ωp,i exp

(
− (xp − ci)

2

2σ2
i

)]
(8)

We can easily derive that, thanks to the introduction of
Gaussian RBF functions, the features of pth dimension in
the KAN layer, after the activation function, follow a Gaus-
sian mixture distribution. When we simply define Φp as
a learnable weight for each dimension, it is evident that
the resulting function form conforms to the Gaussian Pro-
cess (GP) with first-order additive kernels defined in [11].
This structure is consistently easy to fit for classification
tasks and possesses a strong long-range structure to effec-
tively address the COD problem when approximating high-
dimensional functions [11]. With functions like this serving
as the basis functions for continual classifiers, it not only
projects each channel of the feature into a Gaussian space
but also allows the model to select an interested range for
each channel tailored to different classes.

3.4. Kolmogorov-Arnold Classifier for CIL
The above analysis demonstrates that the KAN layer with
RBF can benefit CIL, motivating us to introduce our
Kolmogorov-Arnold Classifier (KAC), which can be inte-
grated into any CIL approach by replacing the conventional
linear classifier with it.

An overview of the KAC is shown in Fig. 3. The
KAC firstly regularizes the feature distribution with a Layer
Normalization LN , resulting in a normalized embedding
LN (F (x)) = [x′

1, x
′
2, · · · , x′

n]. After that, it incorporates
a KAN layer that includes N Gaussian Radial Basis Func-



Table 1. Results on ImageNet-R dataset. We report the average incremental accuracy and the last accuracy on CIL scenarios of 5, 10, 20,
and 40 steps and make comparisons on various approaches, evaluating the results with a linear classifier (baseline) and with our KAC. It
demonstrates that our KAC consistently improves their performance, especially in long-sequence tasks. The change is indicated next to the
accuracy, with blue representing a decrease and red representing an improvement.

Method
5 steps 10 steps 20 steps 40 steps

Avg Last Avg Last Avg Last Avg Last

L2P 78.42 73.57 79.58 73.10 77.93 70.35 74.28 66.02
w/ KAC 77.98 ( -0.44 ) 73.56 ( -0.01 ) 79.22 ( -0.36 ) 73.14 ( +0.04 ) 78.94 ( +1.01 ) 72.11 ( +1.76 ) 76.34 ( +2.06 ) 69.74 ( +3.72 )

DualPrompt 79.75 74.57 79.50 72.48 78.35 70.68 74.51 66.31
w/ KAC 79.96 ( +0.21 ) 76.37 ( +1.80 ) 80.72 ( +1.22 ) 75.67 ( +3.19 ) 80.40 ( +2.05 ) 74.68 ( +4.00 ) 76.87 ( +2.36 ) 71.24 ( +4.93 )

CODAPrompt 82.27 77.62 82.49 77.01 80.92 74.40 76.80 69.34
w/ KAC 83.75 ( +1.48 ) 80.14 ( +2.52 ) 84.43 ( +1.94 ) 79.24 ( +2.23 ) 83.59 ( +2.67 ) 77.94 ( +3.54 ) 79.79 ( +2.99 ) 74.31 ( +4.97 )

CPrompt 84.07 78.68 83.13 76.80 81.83 74.32 78.98 70.07
w/ KAC 84.51 ( +0.44 ) 79.08 ( +0.40 ) 83.97 ( +0.84 ) 78.07 ( +1.27 ) 82.56 ( +0.73 ) 75.73 ( +1.41 ) 80.89 ( +1.91 ) 72.05 ( +1.98 )

tions centered at c = [c1, c2, · · · , cN ]. With the basis func-
tion ϕ is like defined in eq. 6, the logit l is then calculated
as:

l = KAC
(
F (x)

)
= diag

(
WC · Φ

(
LN

(
F (x)

))
·Wq

)
,

(9)
where diag(.) represents extracting the diagonal elements
of a matrix and the Φ

(
LN

(
F (x)

))
is the learnable Gaus-

sian RBF and it can be calculated like:


ϕ(||x′

1 − c1||) ϕ(||x′
1 − c2||) · · · ϕ(||x′

1 − cN ||)
ϕ(||x′

2 − c1||) ϕ(||x′
2 − c2||) · · · ϕ(||x′

2 − cN ||)
...

...
. . .

...
ϕ(||x′

n − c1||) ϕ(||x′
n − c2||) · · · ϕ(||x′

n − cN ||)

 ,

(10)
in which n is the dimensionality of the input embedding
and WC ∈ RC×n is a learnable weight matrix that serves as
an output linear function to predict the probability for each
class, corresponding to the Φp in conventional KAN, while
the Wq ∈ RN×C corresponds to the ϕp,q in conventional
KAN to serve as the univariate learnable activation for each
channel for every class. In practice, the WC and Wq can be
consolidated into a single weight matrix W ∈ RC×(N×n),
from which the final logit is directly predicted using the ba-
sis functions ϕ. The KAC is then represented as:

KAC
(
F (x)

)
= W · Reshape

(
Φ
(
LN

(
F (x)

)))
. (11)

The reshape(.) function flattens the N×n matrix into a 1D
vector to facilitate calculations with W .

In a CIL scenario, T tasks arrive sequentially with class
counts [C1, C2, · · · , CT ]. KAC expands W to accommo-
date new classes, similar to conventional classifiers [52]. At

the tth step, there is an old classification matrix W t−1 ∈
R(N×n)×Cold , where Cold = C1 + C2 + · · · + Ct−1, and
a new matrix W t ∈ R(N×n)×Ct , with the final W after the
tth step being the concatenation of these two matrices.

4. Experiments

4.1. Benchmarks & Implementations

Benchmarks. We evaluate the CIL scenario and further
validate the robustness of our method in Domain Incre-
mental Learning (DIL) [56]. For CIL, we conduct exper-
iments on two commonly used datasets, ImageNet-R [24]
and CUB200 [53], each containing 200 classes. Starting
with 0 base classes, all classes are separated into 5, 10, 20,
and 40 steps to feed the model for training sequentially. For
DIL, following Sprompt [56], we split the DomainNet [48]
dataset into 6 domains, classifying a total of 345 categories
across all tasks. All experiments are conducted in a non-
exemplar setting, with no old samples saved for new train-
ing. The results of experiments with various seeds are pre-
sented in the supplementary materials.

Implementation Details. All experiments are conducted
with ViT-B/16 backbones. The numbed of RBFs is set to
4, the centers [c1, c2, · · · , cN ] are evenly distributed be-
tween -2 and 2, and the σ in the Gaussian functions is set
to 1, allowing for an average division of the range. To
validate the effectiveness of KAC, we select four prompt-
based CIL approaches L2P [58], DualPrompt [57], CO-
DAPrompt [52] and CPrompt [16] as baselines, all of which
have achieved superior performance across various CIL
benchmarks. These approaches leverage learnable prompts
to extract information from pre-trained backbones and clas-
sify the extracted embeddings using linear classifiers. We
directly replace their classifiers with KAC with their orig-



Table 2. Results on CUB200 dataset. The average incremental accuracy and the last accuracy are reported. KAC delivers significant
improvements for all baselines, especially in long-sequence tasks, highlighting its superior performance on fine-grained datasets.

Method
5 steps 10 steps 20 steps 40 steps

Avg Last Avg Last Avg Last Avg Last

L2P 80.05 76.04 74.02 65.28 63.31 51.78 46.84 35.41
w/ KAC 84.42 ( +4.37 ) 83.80 ( +7.76 ) 81.54 ( +7.52 ) 79.77 ( +14.49 ) 73.70 ( +10.39 ) 70.13 ( +18.35 ) 66.08 ( +19.24 ) 60.43 ( +25.02 )

DualPrompt 81.84 76.38 75.10 64.60 66.89 54.68 50.61 37.55
w/ KAC 86.20 ( +4.36 ) 85.03 ( +8.65 ) 82.18 ( +7.08 ) 79.61 ( +14.01 ) 76.93 ( +10.04 ) 71.91 ( +17.23 ) 71.31 ( +20.70 ) 64.69 ( +27.14 )

CODAPrompt 83.09 78.73 79.30 71.87 69.49 58.00 52.57 37.81
w/ KAC 86.56 ( +3.47 ) 85.61 ( +6.88 ) 85.04 ( +5.74 ) 82.59 ( +10.72 ) 77.23 ( +7.74 ) 73.32 ( +15.32 ) 71.36 ( +18.79 ) 64.56 ( +26.75 )

CPrompt 88.62 82.02 85.77 76.80 83.97 72.99 77.34 64.80
w/ KAC 89.60 ( +0.98 ) 83.08 ( +1.06 ) 89.04 ( +3.27 ) 80.75 ( +3.95 ) 87.06 ( +3.09 ) 78.54 ( +5.55 ) 85.11 ( +7.77 ) 76.51 ( +11.71 )

inal hyperparameters to train the model, allowing for a
comparison of the differences between classifiers. We im-
plement all compared approaches with their official code
and their original selected hyperparameters. For all experi-
ments, we report the average incremental accuracy (the av-
erage accuracy over all tasks) and the accuracy of the last
task (the overall accuracy after learning the final task).

4.2. Experimental Results

Experiments on ImageNet-R. Tab. 1 compares the accura-
cies between the baseline methods and those with KAC in
the ImageNet-R benchmarks. Replacing the linear classi-
fiers with KAC leads to improvements across all methods,
especially in challenging long-sequence scenarios, where
gains of 3 to 5 points are observed in most cases. It demon-
strates that KAC effectively helps models mitigate forget-
ting at each step. Furthermore, comparing CODAPrompt
and CPrompt, we find that while both perform similarly
when using linear classifiers, CODAPrompt outperforms
CPrompt when switched to KAC. This indicates that the
compatibility of KAC with different methods varies.

Experiments on CUB200. Tab. 2 shows a comparison of
the metrics in the CUB200 settings, surprising improve-
ments achieving 10 to 25 percent are observed in long-
sequence scenarios. As CUB200 is a fine-grained bird clas-
sification dataset, we believe that KAC will perform well
with such fine-grained datasets.

Experiments on DomainNet. We conduct experiments on
DomainNet for Domain Incremental Learning, aiming to
validate the ability of KAC to extend to other continual clas-
sification tasks. As shown in Tab. 3, when all approaches
are implemented with KAC, the performance achieves an
improvement of about 1 percent in average incremental ac-
curacy and about 0.5 percent in last accuracy, demonstrating
the robustness of our KAC.
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Figure 4. Activation maps for different classes across different
channels. The x-axis represents 50 randomly selected channels
from feature embeddings, while the y-axis represents classes from
different tasks. The colors indicate varying levels of interest.

Visualization of activation maps. Fig. 4 illustrates how
different classes activate distinct channels, the differences
in activation across different channels for various classes.
Only a subset of channels is activated for each category, and
updates are applied exclusively to these channels, prevent-
ing any impact on the other channels and highlighting the
locality advantage in mitigating catastrophic forgetting.

4.3. Ablation Study and Analysis

Ablation on the number of basis functions. The num-
ber of basis functions N is a key hyperparameter of KAC.
An excessive number of basis functions may lead to addi-
tional computations and result in a significantly high dimen-
sionality of W . Conversely, a small value of N may com-
promise the approximation capacity of KAC. To explore
an appropriate value for N , we conduct an ablation study
on it. Fig. 5 shows the average incremental accuracy for



Table 3. Results on DomainNet. A Domain Incremental Learning
experiment is conducted on it with 6 incremental domains of 345
classes. We report the average incremental accuracy and the accu-
racy of the last task. The results show that KAC can also work in
DIL settings.

Method Avg Last

L2P 57.78 49.22
w/ KAC 59.79 ( +2.01 ) 51.10 ( +1.88 )

DualPrompt 60.96 51.83
w/ KAC 62.06 ( +1.10 ) 52.76 ( +0.93 )

CODAPrompt 61.61 53.12
w/ KAC 62.78 ( +1.17 ) 53.54 ( +0.42 )

CPrompt 61.32 52.49
w/ KAC 62.13 ( +0.81 ) 53.02 ( +0.53 )

Table 4. Ablation study on the structure of the classifier. We re-
place the spline functions in KAC with MLPs to validate the effec-
tiveness of the KAN structure. Here, w/ MLP represents the MLP
trained alongside the model, while w/ MLP (fixed) represents the
randomly initialized MLP projection without any updating. The
experiments are conducted in the 20 steps ImageNet-R scenario.

CODAPrompt w/ KAC w/ MLP w/ MLP (fixed)

Avg 80.92 83.59 80.56 65.87
Last 74.40 77.94 73.59 51.03

four approaches using KAC with different numbers of basis
functions in the 20 steps experiment on ImageNet-R. The
results indicate that simply increasing the number of basis
functions does not benefit mitigating forgetting, and further
demonstrate that the performance improvement is not due
to increasing the dimensionality of the embedding space.
Most approaches exhibit better performance when N = 4
or N = 8, encouraging us to set N as 4 in our experiments.

The KAN structure plays a key role. To demonstrate that
the advantages of KAC lie in the introduced KAN structure,
not the additional computations, we replace the RBFs with
an MLP layer, setting its output dimension to the number of
classes and hidden dimension to N ×n to align the number
of parameters with KAC using RBFs, allowing us to make a
fair comparison between the two structure. Tab. 4 shows the
performance of replacing RBFs with the conventional linear
classifier with an additional MLP structure implemented on
CODAPrompt. Upon comparison, we discover that whether
the additional MLP structure is updated alongside the model
or not, it does not yield any positive effects. This indicates
that the advantages of KAC stem from its KAN structure
rather than a simple increase in the dimensionality of the
classification space.

Efficiency analysis. In comparison to conventional lin-
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Figure 5. Ablation study on different numbers of basis functions
in the 20 steps ImageNet-R scenario. The x-axis represents the
number of basis functions, while the y-axis indicates the average
incremental accuracy with varying numbers.

ear classifiers, our KAC introduces a negligible increase
in computational cost and parameter count at the classifier
layer. KAC applies fixed Gaussian activation functions to
each dimension which almost introduces no extra compu-
tations. For a ViT network with an embedding dimension
of 768 to classify 100 categories, the additional parameters
introduced by KAC amount to only 0.23M, which is negli-
gible compared to 86M parameters of the backbone.

5. Conclusions
In this paper, we explore the application of Kolmogorov-
Arnold Networks (KAN) in continual learning and propose
a novel continual classifier, the Kolmogorov-Arnold Classi-
fier (KAC), which leverages KAN’s inherent locality capa-
bility to mitigate feature shifts during the learning of new
tasks. Our analysis reveals that the limited approximation
ability of the B-spline functions in KAN, when applied to
high-dimensional data, forces the model backbone to intro-
duce more shifts to accommodate new classes, leading to
significant degradation in continual learning performance.
This exacerbates the model’s forgetting, overshadowing the
benefits of locality capability, compared to a traditional lin-
ear classifier. To address this issue, we replace the B-spline
functions in KAN with Radial Basis Functions (RBFs),
which improves performance. KAC demonstrates substan-
tial advantages across various continual learning scenarios,
underscoring its effectiveness and robustness. In the future,
we plan to explore further possibilities of KAN in continual
learning, fully harnessing its inherent strengths.
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